565,263 research outputs found

    Special issue on DISC 2010

    Get PDF
    This special issue of Distributed Computing is based on papers that originally appeared as extended abstracts in the Proceedings of the 24th International Symposium on Distributed Computing (DISC2010), held in Cambridge, Massachusetts on August 13–15, 2010. The papers for the Special Issue were chosen by the Program Committee from the 32 regular papers presented at the Symposium, based on their quality and representation of the spectrum of topics encompassed by the Symposium. In addition to being reviewed, in preliminary form, by the Program Committee, the full papers submitted for the Special Issue were refereed according to the standard practices of Distributed Computing (due to time constrains, some papers could not appear in this volume). We thank the Members of the Editorial Board for their work in editing this issue, and the referees and the authors of these papers for their respective contributions

    Qubit-Qutrit Separability-Probability Ratios

    Full text link
    Paralleling our recent computationally-intensive (quasi-Monte Carlo) work for the case N=4 (quant-ph/0308037), we undertake the task for N=6 of computing to high numerical accuracy, the formulas of Sommers and Zyczkowski (quant-ph/0304041) for the (N^2-1)-dimensional volume and (N^2-2)-dimensional hyperarea of the (separable and nonseparable) N x N density matrices, based on the Bures (minimal monotone) metric -- and also their analogous formulas (quant-ph/0302197) for the (non-monotone) Hilbert-Schmidt metric. With the same seven billion well-distributed (``low-discrepancy'') sample points, we estimate the unknown volumes and hyperareas based on five additional (monotone) metrics of interest, including the Kubo-Mori and Wigner-Yanase. Further, we estimate all of these seven volume and seven hyperarea (unknown) quantities when restricted to the separable density matrices. The ratios of separable volumes (hyperareas) to separable plus nonseparable volumes (hyperareas) yield estimates of the separability probabilities of generically rank-six (rank-five) density matrices. The (rank-six) separability probabilities obtained based on the 35-dimensional volumes appear to be -- independently of the metric (each of the seven inducing Haar measure) employed -- twice as large as those (rank-five ones) based on the 34-dimensional hyperareas. Accepting such a relationship, we fit exact formulas to the estimates of the Bures and Hilbert-Schmidt separable volumes and hyperareas.(An additional estimate -- 33.9982 -- of the ratio of the rank-6 Hilbert-Schmidt separability probability to the rank-4 one is quite clearly close to integral too.) The doubling relationship also appears to hold for the N=4 case for the Hilbert-Schmidt metric, but not the others. We fit exact formulas for the Hilbert-Schmidt separable volumes and hyperareas.Comment: 36 pages, 15 figures, 11 tables, final PRA version, new last paragraph presenting qubit-qutrit probability ratios disaggregated by the two distinct forms of partial transpositio

    Monolayer Excitonic Laser

    Full text link
    Recently, two-dimensional (2D) materials have opened a new paradigm for fundamental physics explorations and device applications. Unlike gapless graphene, monolayer transition metal dichalcogenide (TMDC) has new optical functionalities for next generation ultra-compact electronic and opto-electronic devices. When TMDC crystals are thinned down to monolayers, they undergo an indirect to direct bandgap transition, making it an outstanding 2D semiconductor. Unique electron valley degree of freedom, strong light matter interactions and excitonic effects were observed. Enhancement of spontaneous emission has been reported on TMDC monolayers integrated with photonic crystal and distributed Bragg reflector microcavities. However, the coherent light emission from 2D monolayer TMDC has not been demonstrated, mainly due to that an atomic membrane has limited material gain volume and is lack of optical mode confinement. Here, we report the first realization of 2D excitonic laser by embedding monolayer tungsten disulfide (WS2) in a microdisk resonator. Using a whispering gallery mode (WGM) resonator with a high quality factor and optical confinement, we observed bright excitonic lasing in visible wavelength. The Si3N4/WS2/HSQ sandwich configuration provides a strong feedback and mode overlap with monolayer gain. This demonstration of 2D excitonic laser marks a major step towards 2D on-chip optoelectronics for high performance optical communication and computing applications.Comment: 15 pages, 4 figure
    • …
    corecore