110,982 research outputs found

    Distributed Computation as Hierarchy

    Full text link
    This paper presents a new distributed computational model of distributed systems called the phase web that extends V. Pratt's orthocurrence relation from 1986. The model uses mutual-exclusion to express sequence, and a new kind of hierarchy to replace event sequences, posets, and pomsets. The model explicitly connects computation to a discrete Clifford algebra that is in turn extended into homology and co-homology, wherein the recursive nature of objects and boundaries becomes apparent and itself subject to hierarchical recursion. Topsy, a programming environment embodying the phase web, is available from www.cs.auc.dk/topsy.Comment: 16 pages, 3 figure

    Anytime Hierarchical Clustering

    Get PDF
    We propose a new anytime hierarchical clustering method that iteratively transforms an arbitrary initial hierarchy on the configuration of measurements along a sequence of trees we prove for a fixed data set must terminate in a chain of nested partitions that satisfies a natural homogeneity requirement. Each recursive step re-edits the tree so as to improve a local measure of cluster homogeneity that is compatible with a number of commonly used (e.g., single, average, complete) linkage functions. As an alternative to the standard batch algorithms, we present numerical evidence to suggest that appropriate adaptations of this method can yield decentralized, scalable algorithms suitable for distributed/parallel computation of clustering hierarchies and online tracking of clustering trees applicable to large, dynamically changing databases and anomaly detection.Comment: 13 pages, 6 figures, 5 tables, in preparation for submission to a conferenc

    Fine-grained visualization pipelines and lazy functional languages

    Get PDF
    The pipeline model in visualization has evolved from a conceptual model of data processing into a widely used architecture for implementing visualization systems. In the process, a number of capabilities have been introduced, including streaming of data in chunks, distributed pipelines, and demand-driven processing. Visualization systems have invariably built on stateful programming technologies, and these capabilities have had to be implemented explicitly within the lower layers of a complex hierarchy of services. The good news for developers is that applications built on top of this hierarchy can access these capabilities without concern for how they are implemented. The bad news is that by freezing capabilities into low-level services expressive power and flexibility is lost. In this paper we express visualization systems in a programming language that more naturally supports this kind of processing model. Lazy functional languages support fine-grained demand-driven processing, a natural form of streaming, and pipeline-like function composition for assembling applications. The technology thus appears well suited to visualization applications. Using surface extraction algorithms as illustrative examples, and the lazy functional language Haskell, we argue the benefits of clear and concise expression combined with fine-grained, demand-driven computation. Just as visualization provides insight into data, functional abstraction provides new insight into visualization

    Termination Detection of Local Computations

    Full text link
    Contrary to the sequential world, the processes involved in a distributed system do not necessarily know when a computation is globally finished. This paper investigates the problem of the detection of the termination of local computations. We define four types of termination detection: no detection, detection of the local termination, detection by a distributed observer, detection of the global termination. We give a complete characterisation (except in the local termination detection case where a partial one is given) for each of this termination detection and show that they define a strict hierarchy. These results emphasise the difference between computability of a distributed task and termination detection. Furthermore, these characterisations encompass all standard criteria that are usually formulated : topological restriction (tree, rings, or triangu- lated networks ...), topological knowledge (size, diameter ...), and local knowledge to distinguish nodes (identities, sense of direction). These results are now presented as corollaries of generalising theorems. As a very special and important case, the techniques are also applied to the election problem. Though given in the model of local computations, these results can give qualitative insight for similar results in other standard models. The necessary conditions involve graphs covering and quasi-covering; the sufficient conditions (constructive local computations) are based upon an enumeration algorithm of Mazurkiewicz and a stable properties detection algorithm of Szymanski, Shi and Prywes

    Modelization for the Deployment of a Hierarchical Middleware on a Homogeneous Platform

    Get PDF
    Accessing the power of distributed resources can nowadays easily be done using a middleware based on a client/server approach. Several architectures exist for those middlewares. The most scalable ones rely on a hierarchical design. Determining the best shape for the hierarchy, the one giving the best throughput of services, is not an easy task. We first propose a computation and communication model for such hierarchical middleware. Our model takes into account the deployment of several services in the hierarchy. Then, based on this model, we propose an algorithm for automatically constructing a hierarchy. This algorithm aims at offering the users the best obtained to requested throughput ratio, while providing fairness on this ratio for the different kind of services, and using as few resources as possible. Finally, we compare our model with experimental results on a real middleware called DIET

    GiViP: A Visual Profiler for Distributed Graph Processing Systems

    Full text link
    Analyzing large-scale graphs provides valuable insights in different application scenarios. While many graph processing systems working on top of distributed infrastructures have been proposed to deal with big graphs, the tasks of profiling and debugging their massive computations remain time consuming and error-prone. This paper presents GiViP, a visual profiler for distributed graph processing systems based on a Pregel-like computation model. GiViP captures the huge amount of messages exchanged throughout a computation and provides an interactive user interface for the visual analysis of the collected data. We show how to take advantage of GiViP to detect anomalies related to the computation and to the infrastructure, such as slow computing units and anomalous message patterns.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017
    • …
    corecore