69,597 research outputs found

    The communication processor of TUMULT-64

    Get PDF
    Tumult (Twente University MULTi-processor system) is a modular extendible multi-processor system designed and implemented at the Twente University of Technology in co-operation with Oce Nederland B.V. and the Dr. Neher Laboratories (Dutch PTT). Characteristics of the hardware are: MIMD type, distributed memory, message passing, high performance, real-time and fault tolerant. A distributed real-time operating system has been realized, consisting of a multi-tasking kernel per node, inter process communication via typed messages and a distributed file system. In this paper first a brief description of the system is given, after that the architecture of the communication processor will be discussed. Reduction of the communication overhead due to message passing will be emphasized.\ud \u

    A Three-Step Methodology to Improve Domestic Energy Efficiency

    Get PDF
    Increasing energy prices and the greenhouse effect lead to more awareness of energy efficiency of electricity supply. During the last years, a lot of technologies have been developed to improve this efficiency. Next to large scale technologies such as windturbine parks, domestic technologies are developed. These domestic technologies can be divided in 1) Distributed Generation (DG), 2) Energy Storage and 3) Demand Side Load Management. Control algorithms optimizing a combination of these techniques can raise the energy reduction potential of the individual techniques. In this paper an overview of current research is given and a general concept is deducted. Based on this concept, a three-step optimization methodology is proposed using 1) offline local prediction, 2) offline global planning and 3) online local scheduling. The paper ends with results of simulations and field tests showing that the methodology is promising.\u

    Interfacing to Time-Triggered Communication Systems

    Get PDF
    Time-triggered communication facilitates the construction of multi-component real-time systems whose components are in control of their temporal behavior. However, the interface of a time-triggered communication system has to be accessed with care, to avoid that the temporal independence of components gets lost. This paper shows two interfacing strategies, one for asynchronous interface access (in two variants, one being the new Rate-Bounded Non-Blocking Communication protocol) and one for time-aware, synchronized interface access, that allow components to maintain temporal independence. The paper describes and compares the interfacing strategies.Final Accepted Versio

    A Switch Architecture for Real-Time Multimedia Communications

    Get PDF
    In this paper we present a switch that can be used to transfer multimedia type of trafJic. The switch provides a guaranteed throughput and a bounded latency. We focus on the design of a prototype Switching Element using the new technology opportunities being offered today. The architecture meets the multimedia requirements but still has a low complexity and needs a minimum amount of hardware. A main item of this paper will be the background of the architectural design decisions made. These include the interconnection topology, buffer organization, routing and scheduling. The implementation of the switching fabric with FPGAs, allows us to experiment with switching mode, routing strategy and scheduling policy in a multimedia environment. The witching elements are interconnected in a Kautz topology. Kautz graphs have interesting properties such as: a small diametec the degree is independent of the network size, the network is fault-tolerant and has a simple routing algorithm
    corecore