162 research outputs found

    Interference Alignment-Aided Base Station Clustering using Coalition Formation

    Full text link
    Base station clustering is necessary in large interference networks, where the channel state information (CSI) acquisition overhead otherwise would be overwhelming. In this paper, we propose a novel long-term throughput model for the clustered users which addresses the balance between interference mitigation capability and CSI acquisition overhead. The model only depends on statistical CSI, thus enabling long-term clustering. Based on notions from coalitional game theory, we propose a low-complexity distributed clustering method. The algorithm converges in a couple of iterations, and only requires limited communication between base stations. Numerical simulations show the viability of the proposed approach.Comment: 2nd Prize, Student Paper Contest. Copyright 2015 SS&C. Published in the Proceedings of the 49th Asilomar Conference on Signals, Systems and Computers, Nov 8-11, 2015, Pacific Grove, CA, US

    WIRELESS NETWORK COCAST: COOPERATIVE COMMUNICATIONS WITH SPACE-TIME NETWORK CODING

    Get PDF
    Traditional cooperative communications can greatly improve communication performance. However, transmissions from multiple relay nodes are challenging in practice. Single transmissions using time-division multiple access cause large transmission delay, but simultaneous transmissions from two or more nodes using frequency-division multiple access (FDMA), code-division multiple access (CDMA), or distributed space-time codes are associated with the issues of imperfect frequency and timing synchronization due to the asynchronous nature of cooperation. In this dissertation, we propose a novel concept of wireless network cocast (WNC) and develop its associated space-time network codes (STNCs) to overcome the foretold issues. In WNC networks, each node is allocated a time slot for its transmission and thus the issues of imperfect synchronization are eliminated. To reduce the large transmission delay, each relay node forms a unique signal, a combination of the overheard information, and transmits it to the intended destination. The combining functions at relay nodes form a STNC that ensures full spatial diversity for the transmitted information as in traditional cooperative communications. Various traditional combining techniques are utilized to design the STNCs, including FDMA-like and CDMA-like techniques and transform-based techniques with the use of Hadamard and Vandermonde matrices. However, a major distinction is that the combination of information from different sources happens within a relay node instead of through the air as in traditional cooperative communications. We consider a general case of multiuser relay wireless networks, where user nodes transmit and receive their information to and from a common base node with the assistance from relay nodes. We then apply the STNCs to multiuser cooperative networks, in which the user nodes are also relay nodes helping each other in their transmission. Since the cooperative nodes are distributed around the network, the node locations can be an important aspect of designing a STNC. Therefore, we propose a location-aware WNC scheme to reduce the aggregate transmit power and achieve even power distribution among the user nodes in the network. WNC networks and its associated STNCs provide spatial diversity to dramatically reduce the required transmit power. However, due to the additional processing power in receiving and retransmitting each other's information, not all nodes and WNC networks result in energy efficiency. Therefore, we first examine the power consumption in WNC networks. We then offer a TDMA-based merge process based on coalitional formation games to orderly and efficiently form cooperative groups in WNC networks. The proposed merge process substantially reduces the network power consumption and improves the network lifetime

    Cloud Compute-and-Forward with Relay Cooperation

    Full text link
    We study a cloud network with M distributed receiving antennas and L users, which transmit their messages towards a centralized decoder (CD), where M>=L. We consider that the cloud network applies the Compute-and-Forward (C&F) protocol, where L antennas/relays are selected to decode integer equations of the transmitted messages. In this work, we focus on the best relay selection and the optimization of the Physical-Layer Network Coding (PNC) at the relays, aiming at the throughput maximization of the network. Existing literature optimizes PNC with respect to the maximization of the minimum rate among users. The proposed strategy maximizes the sum rate of the users allowing nonsymmetric rates, while the optimal solution is explored with the aid of the Pareto frontier. The problem of relay selection is matched to a coalition formation game, where the relays and the CD cooperate in order to maximize their profit. Efficient coalition formation algorithms are proposed, which perform joint relay selection and PNC optimization. Simulation results show that a considerable improvement is achieved compared to existing results, both in terms of the network sum rate and the players' profits.Comment: Submitted to IEEE Transactions on Wireless Communication

    Applications of Game Theory for Co-opetition at Marine Container Terminals

    Get PDF
    Applications of Game Theory for Co-opetition at Marine Container Terminal
    • …
    corecore