48,542 research outputs found

    Parallel accelerated cyclic reduction preconditioner for three-dimensional elliptic PDEs with variable coefficients

    Full text link
    We present a robust and scalable preconditioner for the solution of large-scale linear systems that arise from the discretization of elliptic PDEs amenable to rank compression. The preconditioner is based on hierarchical low-rank approximations and the cyclic reduction method. The setup and application phases of the preconditioner achieve log-linear complexity in memory footprint and number of operations, and numerical experiments exhibit good weak and strong scalability at large processor counts in a distributed memory environment. Numerical experiments with linear systems that feature symmetry and nonsymmetry, definiteness and indefiniteness, constant and variable coefficients demonstrate the preconditioner applicability and robustness. Furthermore, it is possible to control the number of iterations via the accuracy threshold of the hierarchical matrix approximations and their arithmetic operations, and the tuning of the admissibility condition parameter. Together, these parameters allow for optimization of the memory requirements and performance of the preconditioner.Comment: 24 pages, Elsevier Journal of Computational and Applied Mathematics, Dec 201

    Data mining based cyber-attack detection

    Get PDF

    Exact Inference Techniques for the Analysis of Bayesian Attack Graphs

    Get PDF
    Attack graphs are a powerful tool for security risk assessment by analysing network vulnerabilities and the paths attackers can use to compromise network resources. The uncertainty about the attacker's behaviour makes Bayesian networks suitable to model attack graphs to perform static and dynamic analysis. Previous approaches have focused on the formalization of attack graphs into a Bayesian model rather than proposing mechanisms for their analysis. In this paper we propose to use efficient algorithms to make exact inference in Bayesian attack graphs, enabling the static and dynamic network risk assessments. To support the validity of our approach we have performed an extensive experimental evaluation on synthetic Bayesian attack graphs with different topologies, showing the computational advantages in terms of time and memory use of the proposed techniques when compared to existing approaches.Comment: 14 pages, 15 figure

    Predictive Liability Models and Visualizations of High Dimensional Retail Employee Data

    Full text link
    Employee theft and dishonesty is a major contributor to loss in the retail industry. Retailers have reported the need for more automated analytic tools to assess the liability of their employees. In this work, we train and optimize several machine learning models for regression prediction and analysis on this data, which will help retailers identify and manage risky employees. Since the data we use is very high dimensional, we use feature selection techniques to identify the most contributing factors to an employee's assessed risk. We also use dimension reduction and data embedding techniques to present this dataset in a easy to interpret format
    • …
    corecore