2,975 research outputs found

    Throughput Optimal Scheduling with Dynamic Channel Feedback

    Full text link
    It is well known that opportunistic scheduling algorithms are throughput optimal under full knowledge of channel and network conditions. However, these algorithms achieve a hypothetical achievable rate region which does not take into account the overhead associated with channel probing and feedback required to obtain the full channel state information at every slot. We adopt a channel probing model where β\beta fraction of time slot is consumed for acquiring the channel state information (CSI) of a single channel. In this work, we design a joint scheduling and channel probing algorithm named SDF by considering the overhead of obtaining the channel state information. We first analytically prove SDF algorithm can support 1+ϵ1+\epsilon fraction of of the full rate region achieved when all users are probed where ϵ\epsilon depends on the expected number of users which are not probed. Then, for homogenous channel, we show that when the number of users in the network is greater than 3, ϵ>0\epsilon > 0, i.e., we guarantee to expand the rate region. In addition, for heterogenous channels, we prove the conditions under which SDF guarantees to increase the rate region. We also demonstrate numerically in a realistic simulation setting that this rate region can be achieved by probing only less than 50% of all channels in a CDMA based cellular network utilizing high data rate protocol under normal channel conditions.Comment: submitte

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Joint Channel Probing and Proportional Fair Scheduling in Wireless Networks

    Full text link
    The design of a scheduling scheme is crucial for the efficiency and user-fairness of wireless networks. Assuming that the quality of all user channels is available to a central controller, a simple scheme which maximizes the utility function defined as the sum logarithm throughput of all users has been shown to guarantee proportional fairness. However, to acquire the channel quality information may consume substantial amount of resources. In this work, it is assumed that probing the quality of each user's channel takes a fraction of the coherence time, so that the amount of time for data transmission is reduced. The multiuser diversity gain does not always increase as the number of users increases. In case the statistics of the channel quality is available to the controller, the problem of sequential channel probing for user scheduling is formulated as an optimal stopping time problem. A joint channel probing and proportional fair scheduling scheme is developed. This scheme is extended to the case where the channel statistics are not available to the controller, in which case a joint learning, probing and scheduling scheme is designed by studying a generalized bandit problem. Numerical results demonstrate that the proposed scheduling schemes can provide significant gain over existing schemes.Comment: 26 pages, 8 figure

    An Online Approach to Dynamic Channel Access and Transmission Scheduling

    Full text link
    Making judicious channel access and transmission scheduling decisions is essential for improving performance as well as energy and spectral efficiency in multichannel wireless systems. This problem has been a subject of extensive study in the past decade, and the resulting dynamic and opportunistic channel access schemes can bring potentially significant improvement over traditional schemes. However, a common and severe limitation of these dynamic schemes is that they almost always require some form of a priori knowledge of the channel statistics. A natural remedy is a learning framework, which has also been extensively studied in the same context, but a typical learning algorithm in this literature seeks only the best static policy, with performance measured by weak regret, rather than learning a good dynamic channel access policy. There is thus a clear disconnect between what an optimal channel access policy can achieve with known channel statistics that actively exploits temporal, spatial and spectral diversity, and what a typical existing learning algorithm aims for, which is the static use of a single channel devoid of diversity gain. In this paper we bridge this gap by designing learning algorithms that track known optimal or sub-optimal dynamic channel access and transmission scheduling policies, thereby yielding performance measured by a form of strong regret, the accumulated difference between the reward returned by an optimal solution when a priori information is available and that by our online algorithm. We do so in the context of two specific algorithms that appeared in [1] and [2], respectively, the former for a multiuser single-channel setting and the latter for a single-user multichannel setting. In both cases we show that our algorithms achieve sub-linear regret uniform in time and outperforms the standard weak-regret learning algorithms.Comment: 10 pages, to appear in MobiHoc 201
    corecore