1,554 research outputs found

    Term-Specific Eigenvector-Centrality in Multi-Relation Networks

    Get PDF
    Fuzzy matching and ranking are two information retrieval techniques widely used in web search. Their application to structured data, however, remains an open problem. This article investigates how eigenvector-centrality can be used for approximate matching in multi-relation graphs, that is, graphs where connections of many different types may exist. Based on an extension of the PageRank matrix, eigenvectors representing the distribution of a term after propagating term weights between related data items are computed. The result is an index which takes the document structure into account and can be used with standard document retrieval techniques. As the scheme takes the shape of an index transformation, all necessary calculations are performed during index tim

    On graph combinatorics to improve eigenvector-based measures of centrality in directed networks

    Get PDF
    Producción CientíficaWe present a combinatorial study on the rearrangement of links in the structure of directed networks for the purpose of improving the valuation of a vertex or group of vertices as established by an eigenvector-based centrality measure. We build our topological classification starting from unidirectional rooted trees and up to more complex hierarchical structures such as acyclic digraphs, bidirectional and cyclical rooted trees (obtained by closing cycles on unidirectional trees). We analyze different modifications on the structure of these networks and study their effect on the valuation given by the eigenvector-based scoring functions, with particular focus on α-centrality and PageRank.Ministerio de Economía, Industria y Competitividad (project TIN2014-57226-P)Generalitat de Catalunya (project SGR2014- 890)Ministerio de Ciencia, Innovación y Universidades (project MTM2012-36917-C03-01

    Exposing Multi-Relational Networks to Single-Relational Network Analysis Algorithms

    Full text link
    Many, if not most network analysis algorithms have been designed specifically for single-relational networks; that is, networks in which all edges are of the same type. For example, edges may either represent "friendship," "kinship," or "collaboration," but not all of them together. In contrast, a multi-relational network is a network with a heterogeneous set of edge labels which can represent relationships of various types in a single data structure. While multi-relational networks are more expressive in terms of the variety of relationships they can capture, there is a need for a general framework for transferring the many single-relational network analysis algorithms to the multi-relational domain. It is not sufficient to execute a single-relational network analysis algorithm on a multi-relational network by simply ignoring edge labels. This article presents an algebra for mapping multi-relational networks to single-relational networks, thereby exposing them to single-relational network analysis algorithms.Comment: ISSN:1751-157
    • …
    corecore