5,539 research outputs found

    Hadoop-Oriented SVM-LRU (H-SVM-LRU): An Intelligent Cache Replacement Algorithm to Improve MapReduce Performance

    Full text link
    Modern applications can generate a large amount of data from different sources with high velocity, a combination that is difficult to store and process via traditional tools. Hadoop is one framework that is used for the parallel processing of a large amount of data in a distributed environment, however, various challenges can lead to poor performance. Two particular issues that can limit performance are the high access time for I/O operations and the recomputation of intermediate data. The combination of these two issues can result in resource wastage. In recent years, there have been attempts to overcome these problems by using caching mechanisms. Due to cache space limitations, it is crucial to use this space efficiently and avoid cache pollution (the cache contains data that is not used in the future). We propose Hadoop-oriented SVM-LRU (HSVM- LRU) to improve Hadoop performance. For this purpose, we use an intelligent cache replacement algorithm, SVM-LRU, that combines the well-known LRU mechanism with a machine learning algorithm, SVM, to classify cached data into two groups based on their future usage. Experimental results show a significant decrease in execution time as a result of an increased cache hit ratio, leading to a positive impact on Hadoop performance

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Intelligent Management and Efficient Operation of Big Data

    Get PDF
    This chapter details how Big Data can be used and implemented in networking and computing infrastructures. Specifically, it addresses three main aspects: the timely extraction of relevant knowledge from heterogeneous, and very often unstructured large data sources, the enhancement on the performance of processing and networking (cloud) infrastructures that are the most important foundational pillars of Big Data applications or services, and novel ways to efficiently manage network infrastructures with high-level composed policies for supporting the transmission of large amounts of data with distinct requisites (video vs. non-video). A case study involving an intelligent management solution to route data traffic with diverse requirements in a wide area Internet Exchange Point is presented, discussed in the context of Big Data, and evaluated.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201
    • …
    corecore