2,937 research outputs found

    Distributed Beamforming and Rate Allocation in Multi-Antenna Cognitive Radio Networks

    Full text link
    Abstract—We consider decentralized multi-antenna cognitive radio networks where secondary (cognitive) users are granted simultaneous spectrum access along with license-holding (pri-mary) users. We investigate the problem of designing beam-formers for the secondary users by maximizing the minimum rate, subject to a limited sum-power budget and constraints on the interference level imposed on each primary receiver. We consider two scenarios: the first one allows only single-user decoding at each secondary receiver whereas in the second case each secondary receiver is allowed to employ advanced multi-user decoding and is free to decode any subset of secondary users. We provide an optimal distributed algorithm for the first scenario and an explicit formulation of the optimization problem corresponding to the second scenario. This problem however is non-convex and hence cannot be efficiently solved even in a centralized setup. As a remedy, we suggest a two-step approach. In particular, the beamformers are first designed assuming single user decoding at each secondary receiver. An optimal distributed low-complexity algorithm is then proposed to allocate excess rates to the secondary users, which are made possible due to the use of advanced decoders at the secondary receivers. Simulation results demonstrate the gains yielded by the optimal beamformers as well as the rate allocation algorithms. I

    Beamforming and Rate Allocation in MISO Cognitive Radio Networks

    Full text link
    We consider decentralized multi-antenna cognitive radio networks where secondary (cognitive) users are granted simultaneous spectrum access along with license-holding (primary) users. We treat the problem of distributed beamforming and rate allocation for the secondary users such that the minimum weighted secondary rate is maximized. Such an optimization is subject to (1) a limited weighted sum-power budget for the secondary users and (2) guaranteed protection for the primary users in the sense that the interference level imposed on each primary receiver does not exceed a specified level. Based on the decoding method deployed by the secondary receivers, we consider three scenarios for solving this problem. In the first scenario each secondary receiver decodes only its designated transmitter while suppressing the rest as Gaussian interferers (single-user decoding). In the second case each secondary receiver employs the maximum likelihood decoder (MLD) to jointly decode all secondary transmissions, and in the third one each secondary receiver uses the unconstrained group decoder (UGD). By deploying the UGD, each secondary user is allowed to decode any arbitrary subset of users (which contains its designated user) after suppressing or canceling the remaining users.Comment: 32 pages, 6 figure

    Dynamic Resource Allocation in Cognitive Radio Networks: A Convex Optimization Perspective

    Full text link
    This article provides an overview of the state-of-art results on communication resource allocation over space, time, and frequency for emerging cognitive radio (CR) wireless networks. Focusing on the interference-power/interference-temperature (IT) constraint approach for CRs to protect primary radio transmissions, many new and challenging problems regarding the design of CR systems are formulated, and some of the corresponding solutions are shown to be obtainable by restructuring some classic results known for traditional (non-CR) wireless networks. It is demonstrated that convex optimization plays an essential role in solving these problems, in a both rigorous and efficient way. Promising research directions on interference management for CR and other related multiuser communication systems are discussed.Comment: to appear in IEEE Signal Processing Magazine, special issue on convex optimization for signal processin

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Exploiting Multi-Antennas for Opportunistic Spectrum Sharing in Cognitive Radio Networks

    Full text link
    In cognitive radio (CR) networks, there are scenarios where the secondary (lower priority) users intend to communicate with each other by opportunistically utilizing the transmit spectrum originally allocated to the existing primary (higher priority) users. For such a scenario, a secondary user usually has to trade off between two conflicting goals at the same time: one is to maximize its own transmit throughput; and the other is to minimize the amount of interference it produces at each primary receiver. In this paper, we study this fundamental tradeoff from an information-theoretic perspective by characterizing the secondary user's channel capacity under both its own transmit-power constraint as well as a set of interference-power constraints each imposed at one of the primary receivers. In particular, this paper exploits multi-antennas at the secondary transmitter to effectively balance between spatial multiplexing for the secondary transmission and interference avoidance at the primary receivers. Convex optimization techniques are used to design algorithms for the optimal secondary transmit spatial spectrum that achieves the capacity of the secondary transmission. Suboptimal solutions for ease of implementation are also presented and their performances are compared with the optimal solution. Furthermore, algorithms developed for the single-channel transmission are also extended to the case of multi-channel transmission whereby the secondary user is able to achieve opportunistic spectrum sharing via transmit adaptations not only in space, but in time and frequency domains as well.Comment: Extension of IEEE PIMRC 2007. 35 pages, 6 figures. Submitted to IEEE Journal of Special Topics in Signal Processing, special issue on Signal Processing and Networking for Dynamic Spectrum Acces
    • …
    corecore