94,111 research outputs found

    Distributed Hypothesis Testing with Social Learning and Symmetric Fusion

    Full text link
    We study the utility of social learning in a distributed detection model with agents sharing the same goal: a collective decision that optimizes an agreed upon criterion. We show that social learning is helpful in some cases but is provably futile (and thus essentially a distraction) in other cases. Specifically, we consider Bayesian binary hypothesis testing performed by a distributed detection and fusion system, where all decision-making agents have binary votes that carry equal weight. Decision-making agents in the team sequentially make local decisions based on their own private signals and all precedent local decisions. It is shown that the optimal decision rule is not affected by precedent local decisions when all agents observe conditionally independent and identically distributed private signals. Perfect Bayesian reasoning will cancel out all effects of social learning. When the agents observe private signals with different signal-to-noise ratios, social learning is again futile if the team decision is only approved by unanimity. Otherwise, social learning can strictly improve the team performance. Furthermore, the order in which agents make their decisions affects the team decision.Comment: 10 pages, 7 figure

    Model Selection Approach for Distributed Fault Detection in Wireless Sensor Networks

    Full text link
    Sensor networks aim at monitoring their surroundings for event detection and object tracking. But, due to failure, or death of sensors, false signal can be transmitted. In this paper, we consider the problems of distributed fault detection in wireless sensor network (WSN). In particular, we consider how to take decision regarding fault detection in a noisy environment as a result of false detection or false response of event by some sensors, where the sensors are placed at the center of regular hexagons and the event can occur at only one hexagon. We propose fault detection schemes that explicitly introduce the error probabilities into the optimal event detection process. We introduce two types of detection probabilities, one for the center node, where the event occurs and the other one for the adjacent nodes. This second type of detection probability is new in sensor network literature. We develop schemes under the model selection procedure, multiple model selection procedure and use the concept of Bayesian model averaging to identify a set of likely fault sensors and obtain an average predictive error.Comment: 14 page

    An excess power statistic for detection of burst sources of gravitational radiation

    Get PDF
    We examine the properties of an excess power method to detect gravitational waves in interferometric detector data. This method is designed to detect short-duration (< 0.5 s) burst signals of unknown waveform, such as those from supernovae or black hole mergers. If only the bursts' duration and frequency band are known, the method is an optimal detection strategy in both Bayesian and frequentist senses. It consists of summing the data power over the known time interval and frequency band of the burst. If the detector noise is stationary and Gaussian, this sum is distributed as a chi-squared (non-central chi-squared) deviate in the absence (presence) of a signal. One can use these distributions to compute frequentist detection thresholds for the measured power. We derive the method from Bayesian analyses and show how to compute Bayesian thresholds. More generically, when only upper and/or lower bounds on the bursts duration and frequency band are known, one must search for excess power in all concordant durations and bands. Two search schemes are presented and their computational efficiencies are compared. We find that given reasonable constraints on the effective duration and bandwidth of signals, the excess power search can be performed on a single workstation. Furthermore, the method can be almost as efficient as matched filtering when a large template bank is required. Finally, we derive generalizations of the method to a network of several interferometers under the assumption of Gaussian noise.Comment: 22 pages, 6 figure

    Optimal and Suboptimal Detection of Gaussian Signals in Noise: Asymptotic Relative Efficiency

    Full text link
    The performance of Bayesian detection of Gaussian signals using noisy observations is investigated via the error exponent for the average error probability. Under unknown signal correlation structure or limited processing capability it is reasonable to use the simple quadratic detector that is optimal in the case of an independent and identically distributed (i.i.d.) signal. Using the large deviations principle, the performance of this detector (which is suboptimal for non-i.i.d. signals) is compared with that of the optimal detector for correlated signals via the asymptotic relative efficiency defined as the ratio between sample sizes of two detectors required for the same performance in the large-sample-size regime. The effects of SNR on the ARE are investigated. It is shown that the asymptotic efficiency of the simple quadratic detector relative to the optimal detector converges to one as the SNR increases without bound for any bounded spectrum, and that the simple quadratic detector performs as well as the optimal detector for a wide range of the correlation values at high SNR.Comment: To appear in the Proceedings of the SPIE Conference on Advanced Signal Processing Algorithms, Architectures and Implementations XV, San Diego, CA, Jul. 1 - Aug. 4, 200

    A bayesian approach to adaptive detection in nonhomogeneous environments

    Get PDF
    We consider the adaptive detection of a signal of interest embedded in colored noise, when the environment is nonhomogeneous, i.e., when the training samples used for adaptation do not share the same covariance matrix as the vector under test. A Bayesian framework is proposed where the covariance matrices of the primary and the secondary data are assumed to be random, with some appropriate joint distribution. The prior distributions of these matrices require a rough knowledge about the environment. This provides a flexible, yet simple, knowledge-aided model where the degree of nonhomogeneity can be tuned through some scalar variables. Within this framework, an approximate generalized likelihood ratio test is formulated. Accordingly, two Bayesian versions of the adaptive matched filter are presented, where the conventional maximum likelihood estimate of the primary data covariance matrix is replaced either by its minimum mean-square error estimate or by its maximum a posteriori estimate. Two detectors require generating samples distributed according to the joint posterior distribution of primary and secondary data covariance matrices. This is achieved through the use of a Gibbs sampling strategy. Numerical simulations illustrate the performances of these detectors, and compare them with those of the conventional adaptive matched filter

    Bayesian detection of unmodeled bursts of gravitational waves

    Full text link
    The data analysis problem of coherently searching for unmodeled gravitational-wave bursts in the data generated by a global network of gravitational-wave observatories has been at the center of research for almost two decades. As data from these detectors is starting to be analyzed, a renewed interest in this problem has been sparked. A Bayesian approach to the problem of coherently searching for gravitational wave bursts with a network of ground-based interferometers is here presented. We demonstrate how to systematically incorporate prior information on the burst signal and its source into the analysis. This information may range from the very minimal, such as best-guess durations, bandwidths, or polarization content, to complete prior knowledge of the signal waveforms and the distribution of sources through spacetime. We show that this comprehensive Bayesian formulation contains several previously proposed detection statistics as special limiting cases, and demonstrate that it outperforms them.Comment: 18 pages, 3 figures, revisions based on referee comment

    Classification of chirp signals using hierarchical bayesian learning and MCMC methods

    Get PDF
    This paper addresses the problem of classifying chirp signals using hierarchical Bayesian learning together with Markov chain Monte Carlo (MCMC) methods. Bayesian learning consists of estimating the distribution of the observed data conditional on each class from a set of training samples. Unfortunately, this estimation requires to evaluate intractable multidimensional integrals. This paper studies an original implementation of hierarchical Bayesian learning that estimates the class conditional probability densities using MCMC methods. The performance of this implementation is first studied via an academic example for which the class conditional densities are known. The problem of classifying chirp signals is then addressed by using a similar hierarchical Bayesian learning implementation based on a Metropolis-within-Gibbs algorithm
    • 

    corecore