283 research outputs found

    Compressive Demodulation of Mutually Interfering Signals

    Full text link
    Multi-User Detection is fundamental not only to cellular wireless communication but also to Radio-Frequency Identification (RFID) technology that supports supply chain management. The challenge of Multi-user Detection (MUD) is that of demodulating mutually interfering signals, and the two biggest impediments are the asynchronous character of random access and the lack of channel state information. Given that at any time instant the number of active users is typically small, the promise of Compressive Sensing (CS) is the demodulation of sparse superpositions of signature waveforms from very few measurements. This paper begins by unifying two front-end architectures proposed for MUD by showing that both lead to the same discrete signal model. Algorithms are presented for coherent and noncoherent detection that are based on iterative matching pursuit. Noncoherent detection is all that is needed in the application to RFID technology where it is only the identity of the active users that is required. The coherent detector is also able to recover the transmitted symbols. It is shown that compressive demodulation requires O(Klog⁑N(Ο„+1))\mathcal{O}(K\log N(\tau+1)) samples to recover KK active users whereas standard MUD requires N(Ο„+1)N(\tau+1) samples to process NN total users with a maximal delay Ο„\tau. Performance guarantees are derived for both coherent and noncoherent detection that are identical in the way they scale with number of active users. The power profile of the active users is shown to be less important than the SNR of the weakest user. Gabor frames and Kerdock codes are proposed as signature waveforms and numerical examples demonstrate the superior performance of Kerdock codes - the same probability of error with less than half the samples.Comment: submitted for journal publicatio

    Asynchronous Approximation of a Single Component of the Solution to a Linear System

    Full text link
    We present a distributed asynchronous algorithm for approximating a single component of the solution to a system of linear equations Ax=bAx = b, where AA is a positive definite real matrix, and b∈Rnb \in \mathbb{R}^n. This is equivalent to solving for xix_i in x=Gx+zx = Gx + z for some GG and zz such that the spectral radius of GG is less than 1. Our algorithm relies on the Neumann series characterization of the component xix_i, and is based on residual updates. We analyze our algorithm within the context of a cloud computation model, in which the computation is split into small update tasks performed by small processors with shared access to a distributed file system. We prove a robust asymptotic convergence result when the spectral radius ρ(∣G∣)<1\rho(|G|) < 1, regardless of the precise order and frequency in which the update tasks are performed. We provide convergence rate bounds which depend on the order of update tasks performed, analyzing both deterministic update rules via counting weighted random walks, as well as probabilistic update rules via concentration bounds. The probabilistic analysis requires analyzing the product of random matrices which are drawn from distributions that are time and path dependent. We specifically consider the setting where nn is large, yet GG is sparse, e.g., each row has at most dd nonzero entries. This is motivated by applications in which GG is derived from the edge structure of an underlying graph. Our results prove that if the local neighborhood of the graph does not grow too quickly as a function of nn, our algorithm can provide significant reduction in computation cost as opposed to any algorithm which computes the global solution vector xx. Our algorithm obtains an Ο΅βˆ₯xβˆ₯2\epsilon \|x\|_2 additive approximation for xix_i in constant time with respect to the size of the matrix when the maximum row sparsity d=O(1)d = O(1) and 1/(1βˆ’βˆ₯Gβˆ₯2)=O(1)1/(1-\|G\|_2) = O(1)

    Heterogeneous Congestion Control: Efficiency, Fairness and Design

    Get PDF
    When heterogeneous congestion control protocols that react to different pricing signals (e.g. packet loss, queueing delay, ECN marking etc.) share the same network, the current theory based on utility maximization fails to predict the network behavior. Unlike in a homogeneous network, the bandwidth allocation now depends on router parameters and flow arrival patterns. It can be non-unique, inefficient and unfair. This paper has two objectives. First, we demonstrate the intricate behaviors of a heterogeneous network through simulations and present a rigorous framework to help understand its equilibrium efficiency and fairness properties. By identifying an optimization problem associated with every equilibrium, we show that every equilibrium is Pareto efficient and provide an upper bound on efficiency loss due to pricing heterogeneity. On fairness, we show that intra-protocol fairness is still decided by a utility maximization problem while inter-protocol fairness is the part over which we don¿t have control. However it is shown that we can achieve any desirable inter-protocol fairness by properly choosing protocol parameters. Second, we propose a simple slow timescale source-based algorithm to decouple bandwidth allocation from router parameters and flow arrival patterns and prove its feasibility. The scheme needs only local information

    Equilibrium of Heterogeneous Congestion Control: Optimality and Stability

    Get PDF
    When heterogeneous congestion control protocols that react to different pricing signals share the same network, the current theory based on utility maximization fails to predict the network behavior. The pricing signals can be different types of signals such as packet loss, queueing delay, etc, or different values of the same type of signal such as different ECN marking values based on the same actual link congestion level. Unlike in a homogeneous network, the bandwidth allocation now depends on router parameters and flow arrival patterns. It can be non-unique, suboptimal and unstable. In Tang et al. (β€œEquilibrium of heterogeneous congestion control: Existence and uniqueness,” IEEE/ACM Trans. Netw., vol. 15, no. 4, pp. 824–837, Aug. 2007), existence and uniqueness of equilibrium of heterogeneous protocols are investigated. This paper extends the study with two objectives: analyzing the optimality and stability of such networks and designing control schemes to improve those properties. First, we demonstrate the intricate behavior of a heterogeneous network through simulations and present a framework to help understand its equilibrium properties. Second, we propose a simple source-based algorithm to decouple bandwidth allocation from router parameters and flow arrival patterns by only updating a linear parameter in the sources’ algorithms on a slow timescale. It steers a network to the unique optimal equilibrium. The scheme can be deployed incrementally as the existing protocol needs no change and only new protocols need to adopt the slow timescale adaptation

    Scalable Emulation of Sign-Problemβˆ’-Free Hamiltonians with Room Temperature p-bits

    Full text link
    The growing field of quantum computing is based on the concept of a q-bit which is a delicate superposition of 0 and 1, requiring cryogenic temperatures for its physical realization along with challenging coherent coupling techniques for entangling them. By contrast, a probabilistic bit or a p-bit is a robust classical entity that fluctuates between 0 and 1, and can be implemented at room temperature using present-day technology. Here, we show that a probabilistic coprocessor built out of room temperature p-bits can be used to accelerate simulations of a special class of quantum many-body systems that are sign-problemβˆ’-free or stoquastic, leveraging the well-known Suzuki-Trotter decomposition that maps a dd-dimensional quantum many body Hamiltonian to a dd+1-dimensional classical Hamiltonian. This mapping allows an efficient emulation of a quantum system by classical computers and is commonly used in software to perform Quantum Monte Carlo (QMC) algorithms. By contrast, we show that a compact, embedded MTJ-based coprocessor can serve as a highly efficient hardware-accelerator for such QMC algorithms providing several orders of magnitude improvement in speed compared to optimized CPU implementations. Using realistic device-level SPICE simulations we demonstrate that the correct quantum correlations can be obtained using a classical p-circuit built with existing technology and operating at room temperature. The proposed coprocessor can serve as a tool to study stoquastic quantum many-body systems, overcoming challenges associated with physical quantum annealers.Comment: Fixed minor typos and expanded Appendi

    Design of secure and trustworthy system-on-chip architectures using hardware-based root-of-trust techniques

    Get PDF
    Cyber-security is now a critical concern in a wide range of embedded computing modules, communications systems, and connected devices. These devices are used in medical electronics, automotive systems, power grid systems, robotics, and avionics. The general consensus today is that conventional approaches and software-only schemes are not sufficient to provide desired security protections and trustworthiness. Comprehensive hardware-software security solutions so far have remained elusive. One major challenge is that in current system-on-chip (SoCs) designs, processing elements (PEs) and executable codes with varying levels of trust, are all integrated on the same computing platform to share resources. This interdependency of modules creates a fertile attack ground and represents the Achilles’ heel of heterogeneous SoC architectures. The salient research question addressed in this dissertation is β€œcan one design a secure computer system out of non-secure or untrusted computing IP components and cores?”. In response to this question, we establish a generalized, user/designer-centric set of design principles which intend to advance the construction of secure heterogeneous multi-core computing systems. We develop algorithms, models of computation, and hardware security primitives to integrate secure and non-secure processing elements into the same chip design while aiming for: (a) maintaining individual core’s security; (b) preventing data leakage and corruption; (c) promoting data and resource sharing among the cores; and (d) tolerating malicious behaviors from untrusted processing elements and software applications. The key contributions of this thesis are: 1. The introduction of a new architectural model for integrating processing elements with different security and trust levels, i.e., secure and non-secure cores with trusted and untrusted provenances; 2. A generalized process isolation design methodology for the new architecture model that covers both the software and hardware layers to (i) create hardware-assisted virtual logical zones, and (ii) perform both static and runtime security, privilege level and trust authentication checks; 3. A set of secure protocols and hardware root-of-trust (RoT) primitives to support the process isolation design and to provide the following functionalities: (i) hardware immutable identities – using physical unclonable functions, (ii) core hijacking and impersonation resistance – through a blind signature scheme, (iii) threshold-based data access control – with a robust and adaptive secure secret sharing algorithm, (iv) privacy-preserving authorization verification – by proposing a group anonymous authentication algorithm, and (v) denial of resource or denial of service attack avoidance – by developing an interconnect network routing algorithm and a memory access mechanism according to user-defined security policies. 4. An evaluation of the security of the proposed hardware primitives in the post-quantum era, and possible extensions and algorithmic modifications for their post-quantum resistance. In this dissertation, we advance the practicality of secure-by-construction methodologies in SoC architecture design. The methodology allows for the use of unsecured or untrusted processing elements in the construction of these secure architectures and tries to extend their effectiveness into the post-quantum computing era

    Age-Based Metrics for Joint Control and Communication in Cyber-Physical Industrial Systems

    Get PDF
    • …
    corecore