8,878 research outputs found

    Agent-based transportation planning compared with scheduling heuristics

    Get PDF
    Here we consider the problem of dynamically assigning vehicles to transportation orders that have di¤erent time windows and should be handled in real time. We introduce a new agent-based system for the planning and scheduling of these transportation networks. Intelligent vehicle agents schedule their own routes. They interact with job agents, who strive for minimum transportation costs, using a Vickrey auction for each incoming order. We use simulation to compare the on-time delivery percentage and the vehicle utilization of an agent-based planning system to a traditional system based on OR heuristics (look-ahead rules, serial scheduling). Numerical experiments show that a properly designed multi-agent system may perform as good as or even better than traditional methods

    Comparison of agent-based scheduling to look-ahead heuristics for real-time transportation problems

    Get PDF
    We consider the real-time scheduling of full truckload transportation orders with time windows that arrive during schedule execution. Because a fast scheduling method is required, look-ahead heuristics are traditionally used to solve these kinds of problems. As an alternative, we introduce an agent-based approach where intelligent vehicle agents schedule their own routes. They interact with job agents, who strive for minimum transportation costs, using a Vickrey auction for each incoming order. This approach offers several advantages: it is fast, requires relatively little information and facilitates easy schedule adjustments in reaction to information updates. We compare the agent-based approach to more traditional hierarchical heuristics in an extensive simulation experiment. We find that a properly designed multiagent approach performs as good as or even better than traditional methods. Particularly, the multi-agent approach yields less empty miles and a more stable service level

    Opportunity costs calculation in agent-based vehicle routing and scheduling

    Get PDF
    In this paper we consider a real-time, dynamic pickup and delivery problem with timewindows where orders should be assigned to one of a set of competing transportation companies. Our approach decomposes the problem into a multi-agent structure where vehicle agents are responsible for the routing and scheduling decisions and the assignment of orders to vehicles is done by using a second-price auction. Therefore the system performance will be heavily dependent on the pricing strategy of the vehicle agents. We propose a pricing strategy for vehicle agents based on dynamic programming where not only the direct cost of a job insertion is taken into account, but also its impact on future opportunities. We also propose a waiting strategy based on the same opportunity valuation. Simulation is used to evaluate the benefit of pricing opportunities compared to simple pricing strategies in different market settings. Numerical results show that the proposed approach provides high quality solutions, in terms of profits, capacity utilization and delivery reliability

    Job Selection in a Network of Autonomous UAVs for Delivery of Goods

    Get PDF
    This article analyzes two classes of job selection policies that control how a network of autonomous aerial vehicles delivers goods from depots to customers. Customer requests (jobs) occur according to a spatio-temporal stochastic process not known by the system. If job selection uses a policy in which the first job (FJ) is served first, the system may collapse to instability by removing just one vehicle. Policies that serve the nearest job (NJ) first show such threshold behavior only in some settings and can be implemented in a distributed manner. The timing of job selection has significant impact on delivery time and stability for NJ while it has no impact for FJ. Based on these findings we introduce a methodological approach for decision-making support to set up and operate such a system, taking into account the trade-off between monetary cost and service quality. In particular, we compute a lower bound for the infrastructure expenditure required to achieve a certain expected delivery time. The approach includes three time horizons: long-term decisions on the number of depots to deploy in the service area, mid-term decisions on the number of vehicles to use, and short-term decisions on the policy to operate the vehicles

    A Dynamic Boundary Guarding Problem with Translating Targets

    Full text link
    We introduce a problem in which a service vehicle seeks to guard a deadline (boundary) from dynamically arriving mobile targets. The environment is a rectangle and the deadline is one of its edges. Targets arrive continuously over time on the edge opposite the deadline, and move towards the deadline at a fixed speed. The goal for the vehicle is to maximize the fraction of targets that are captured before reaching the deadline. We consider two cases; when the service vehicle is faster than the targets, and; when the service vehicle is slower than the targets. In the first case we develop a novel vehicle policy based on computing longest paths in a directed acyclic graph. We give a lower bound on the capture fraction of the policy and show that the policy is optimal when the distance between the target arrival edge and deadline becomes very large. We present numerical results which suggest near optimal performance away from this limiting regime. In the second case, when the targets are slower than the vehicle, we propose a policy based on servicing fractions of the translational minimum Hamiltonian path. In the limit of low target speed and high arrival rate, the capture fraction of this policy is within a small constant factor of the optimal.Comment: Extended version of paper for the joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conferenc

    Applying revenue management to agent-based transportation planning

    Get PDF
    We consider a multi-company, less-than-truckload, dynamic VRP based on the concept of multi-agent systems. We focus on the intelligence of one vehicle agent and especially on its bidding strategy. We address the problem how to price loads that are offered in real-time such that available capacity is used in the most profitable way taking into account possible future revenues. We develop methods to price loads dynamically based on revenue management concepts.\ud We consider a one leg problem, i.e., a vehicle travels from i to j and can wait at most Ï„ time units in which it can get additional loads from i to j. We develop a DP to price loads given a certain amount of remaining capacity and an expected number of auctions in the time-to-go. Because a DP might be impractical if parameters change frequently and bids has to be determined in real-time, we derived two approximations to speed up calculations. The performance of these approximations are compared with the performance of the DP. Besides we introduce a new measure to calculate the average vehicle utilisation in consolidated shipments. This measure can be calculated based on a limited amount of data and gives an indication of the efficiency of schedules and the performance of vehicles

    Interaction between intelligent agent strategies for real-time transportation planning

    Get PDF
    In this paper we study the real-time scheduling of time-sensitive full truckload pickup-and-delivery jobs. The problem involves the allocation of jobs to a fixed set of vehicles which might belong to dfferent collaborating transportation agencies. A recently proposed solution methodology for this problem is the use of a multi-agent system where shipper agents other jobs through sequential auctions and vehicle agents bid on these jobs. In this paper we consider such a multi-agent system where both the vehicle agents and the shipper agents are using profit maximizing look-ahead strategies. Our main contribution is that we study the interrelation of these strategies and their impact on the system-wide logistical costs. From our simulation results, we conclude that the system-wide logistical costs (i) are always reduced by using the look-ahead policies instead of a myopic policy (10-20%) and (ii) the joint effect of two look-ahead policies is larger than the effect of an individual policy. To provide an indication of the savings that might be realized with a central solution methodology, we benchmark our results against an integer programming approach

    Look-ahead strategies for dynamic pickup and delivery problems

    Get PDF
    In this paper we consider a dynamic full truckload pickup and delivery problem with time-windows. Jobs arrive over time and are offered in a second-price auction. Individual vehicles bid on these jobs and maintain a schedule of the jobs they have won. We propose a pricing and scheduling strategy based on dynamic programming where not only the direct costs of a job insertion are taken into account, but also the impact on future opportunities. Simulation is used to evaluate the benefits of pricing opportunities compared to simple pricing strategies in various market settings. Numerical results show that the proposed approach provides high quality solutions, in terms of profits, capacity utilization, and delivery reliability
    • …
    corecore