78,186 research outputs found

    Search Trees for Distributed Graph Transformation Systems

    Get PDF
    Graph transformation systems, like PROGRES and Fujaba, can be used for modeling software systems of various domains, and support the automatic generation of executable code. A graph transformation rule is executed only if the pattern of the transformation's left-hand side is found in the graph. The search for the pattern has an exponential worst-case complexity. In many cases, the average complexity can be reduced using search tree algorithms in the code generation phase. When modeling distributed graph transformations, the communication overhead between the coupled applications largely affects the pattern matching performance. Therefore, we present an approach for adapting existing search tree algorithms for the efficient search of distributed graph patterns. Our algorithm divides the distributed graph pattern into several sub-patterns such that every sub-pattern affects solely the graph of exactly one coupled application. The results of these sub-patterns are used to determine the match for the entire graph pattern

    Search Trees for Distributed Graph Transformation Systems

    Get PDF
    Graph transformation systems, like PROGRES and Fujaba, can be used for modeling software systems of various domains, and support the automatic generation of executable code. A graph transformation rule is executed only if the pattern of the transformation's left-hand side is found in the graph. The search for the pattern has an exponential worst-case complexity. In many cases, the average complexity can be reduced using search tree algorithms in the code generation phase. When modeling distributed graph transformations, the communication overhead between the coupled applications largely affects the pattern matching performance. Therefore, we present an approach for adapting existing search tree algorithms for the efficient search of distributed graph patterns. Our algorithm divides the distributed graph pattern into several sub-patterns such that every sub-pattern affects solely the graph of exactly one coupled application. The results of these sub-patterns are used to determine the match for the entire graph pattern

    Fuzzy Dynamic Discrimination Algorithms for Distributed Knowledge Management Systems

    Get PDF
    A reduction of the algorithmic complexity of the fuzzy inference engine has the following property: the inputs (the fuzzy rules and the fuzzy facts) can be divided in two parts, one being relatively constant for a long a time (the fuzzy rule or the knowledge model) when it is compared to the second part (the fuzzy facts) for every inference cycle. The occurrence of certain transformations over the constant part makes sense, in order to decrease the solution procurement time, in the case that the second part varies, but it is known at certain moments in time. The transformations attained in advance are called pre-processing or knowledge compilation. The use of variables in a Business Rule Management System knowledge representation allows factorising knowledge, like in classical knowledge based systems. The language of the first-degree predicates facilitates the formulation of complex knowledge in a rigorous way, imposing appropriate reasoning techniques. It is, thus, necessary to define the description method of fuzzy knowledge, to justify the knowledge exploiting efficiency when the compiling technique is used, to present the inference engine and highlight the functional features of the pattern matching and the state space processes. This paper presents the main results of our project PR356 for designing a compiler for fuzzy knowledge, like Rete compiler, that comprises two main components: a static fuzzy discrimination structure (Fuzzy Unification Tree) and the Fuzzy Variables Linking Network. There are also presented the features of the elementary pattern matching process that is based on the compiled structure of fuzzy knowledge. We developed fuzzy discrimination algorithms for Distributed Knowledge Management Systems (DKMSs). The implementations have been elaborated in a prototype system FRCOM (Fuzzy Rule COMpiler).Fuzzy Unification Tree, Dynamic Discrimination of Fuzzy Sets, DKMS, FRCOM

    Prospects and limitations of full-text index structures in genome analysis

    Get PDF
    The combination of incessant advances in sequencing technology producing large amounts of data and innovative bioinformatics approaches, designed to cope with this data flood, has led to new interesting results in the life sciences. Given the magnitude of sequence data to be processed, many bioinformatics tools rely on efficient solutions to a variety of complex string problems. These solutions include fast heuristic algorithms and advanced data structures, generally referred to as index structures. Although the importance of index structures is generally known to the bioinformatics community, the design and potency of these data structures, as well as their properties and limitations, are less understood. Moreover, the last decade has seen a boom in the number of variant index structures featuring complex and diverse memory-time trade-offs. This article brings a comprehensive state-of-the-art overview of the most popular index structures and their recently developed variants. Their features, interrelationships, the trade-offs they impose, but also their practical limitations, are explained and compared

    A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    Full text link
    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a "Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named "Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over selectivity agnostic approaches.Comment: in 18th International Conference on Extending Database Technology (EDBT) (2015

    AMaχoS—Abstract Machine for Xcerpt

    Get PDF
    Web query languages promise convenient and efficient access to Web data such as XML, RDF, or Topic Maps. Xcerpt is one such Web query language with strong emphasis on novel high-level constructs for effective and convenient query authoring, particularly tailored to versatile access to data in different Web formats such as XML or RDF. However, so far it lacks an efficient implementation to supplement the convenient language features. AMaχoS is an abstract machine implementation for Xcerpt that aims at efficiency and ease of deployment. It strictly separates compilation and execution of queries: Queries are compiled once to abstract machine code that consists in (1) a code segment with instructions for evaluating each rule and (2) a hint segment that provides the abstract machine with optimization hints derived by the query compilation. This article summarizes the motivation and principles behind AMaχoS and discusses how its current architecture realizes these principles

    Constellation Queries over Big Data

    Full text link
    A geometrical pattern is a set of points with all pairwise distances (or, more generally, relative distances) specified. Finding matches to such patterns has applications to spatial data in seismic, astronomical, and transportation contexts. For example, a particularly interesting geometric pattern in astronomy is the Einstein cross, which is an astronomical phenomenon in which a single quasar is observed as four distinct sky objects (due to gravitational lensing) when captured by earth telescopes. Finding such crosses, as well as other geometric patterns, is a challenging problem as the potential number of sets of elements that compose shapes is exponentially large in the size of the dataset and the pattern. In this paper, we denote geometric patterns as constellation queries and propose algorithms to find them in large data applications. Our methods combine quadtrees, matrix multiplication, and unindexed join processing to discover sets of points that match a geometric pattern within some additive factor on the pairwise distances. Our distributed experiments show that the choice of composition algorithm (matrix multiplication or nested loops) depends on the freedom introduced in the query geometry through the distance additive factor. Three clearly identified blocks of threshold values guide the choice of the best composition algorithm. Finally, solving the problem for relative distances requires a novel continuous-to-discrete transformation. To the best of our knowledge this paper is the first to investigate constellation queries at scale
    corecore