2,571 research outputs found

    Online Energy Generation Scheduling for Microgrids with Intermittent Energy Sources and Co-Generation

    Full text link
    Microgrids represent an emerging paradigm of future electric power systems that can utilize both distributed and centralized generations. Two recent trends in microgrids are the integration of local renewable energy sources (such as wind farms) and the use of co-generation (i.e., to supply both electricity and heat). However, these trends also bring unprecedented challenges to the design of intelligent control strategies for microgrids. Traditional generation scheduling paradigms rely on perfect prediction of future electricity supply and demand. They are no longer applicable to microgrids with unpredictable renewable energy supply and with co-generation (that needs to consider both electricity and heat demand). In this paper, we study online algorithms for the microgrid generation scheduling problem with intermittent renewable energy sources and co-generation, with the goal of maximizing the cost-savings with local generation. Based on the insights from the structure of the offline optimal solution, we propose a class of competitive online algorithms, called CHASE (Competitive Heuristic Algorithm for Scheduling Energy-generation), that track the offline optimal in an online fashion. Under typical settings, we show that CHASE achieves the best competitive ratio among all deterministic online algorithms, and the ratio is no larger than a small constant 3.Comment: 26 pages, 13 figures. It will appear in Proc. of ACM SIGMETRICS, 201

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    Power System State Estimation and Renewable Energy Optimization in Smart Grids

    Get PDF
    The future smart grid will benefit from real-time monitoring, automated outage management, increased renewable energy penetration, and enhanced consumer involvement. Among the many research areas related to smart grids, this dissertation will focus on two important topics: power system state estimation using phasor measurement units (PMUs), and optimization for renewable energy integration. In the first topic, we consider power system state estimation using PMUs, when phase angle mismatch exists in the measurements. In particular, we build a measurement model that takes into account the measurement phase angle mismatch. We then propose algorithms to increase state estimation accuracy by taking into account the phase angle mismatch. Based on the proposed measurement model, we derive the posterior Cramér-Rao bound on the estimation error, and propose a method for PMU placement in the grid. Using numerical examples, we show that by considering the phase angle mismatch in the measurements, the estimation accuracy can be significantly improved compared with the traditional weighted least-squares estimator or Kalman filtering. We also show that using the proposed PMU placement strategy can increase the estimation accuracy by placing a limited number of PMUs in proper locations. In the second topic, we consider optimization for renewable energy integration in smart grids. We first consider a scenario where individual energy users own on-site renewable generators, and can both purchase and sell electricity to the main grid. Under this setup, we develop a method for parallel load scheduling of different energy users, with the goal of reducing the overall cost to energy users as well as to energy providers. The goal is achieved by finding the optimal load schedule of each individual energy user in a parallel distributed manner, to flatten the overall load of all the energy users. We then consider the case of a micro-grid, or an isolated grid, with a large penetration of renewable energy. In this case, we jointly optimize the energy storage and renewable generator capacity, in order to ensure an uninterrupted power supply with minimum costs. To handle the large dimensionality of the problem due to large historical datasets used, we reformulate the original optimization problem as a consensus problem, and use the alternating direction method of multipliers to solve for the optimal solution in a distributed manner

    Energy Storage Optimization for Grid Reliability

    Full text link
    Large scale renewable energy integration is being planned for multiple power grids around the world. To achieve secure and stable grid operations, additional resources/reserves are needed to mitigate the inherent intermittency of renewable energy sources (RES). In this paper, we present formulations to understand the effect of fast storage reserves in improving grid reliability under different cost functions. Our formulations and solution schemes not only aim to minimize imbalance but also maintain state-of-charge (SoC) of storage. In particular, we show that accounting for system response due to inertia and local governor response enables a more realistic quantification of storage requirements for damping net load fluctuations. The storage requirement is significantly lower than values determined when such traditional response are not accounted for. We demonstrate the performance of our designed policies through studies using real data from the Elia TSO in Belgium and BPA agency in the USA. The numerical results enable us to benchmark the marginal effect on reliability due to increasing storage size under different system responses and associated cost functions
    corecore