2,468 research outputs found

    The Parameterized Complexity of Centrality Improvement in Networks

    Full text link
    The centrality of a vertex v in a network intuitively captures how important v is for communication in the network. The task of improving the centrality of a vertex has many applications, as a higher centrality often implies a larger impact on the network or less transportation or administration cost. In this work we study the parameterized complexity of the NP-complete problems Closeness Improvement and Betweenness Improvement in which we ask to improve a given vertex' closeness or betweenness centrality by a given amount through adding a given number of edges to the network. Herein, the closeness of a vertex v sums the multiplicative inverses of distances of other vertices to v and the betweenness sums for each pair of vertices the fraction of shortest paths going through v. Unfortunately, for the natural parameter "number of edges to add" we obtain hardness results, even in rather restricted cases. On the positive side, we also give an island of tractability for the parameter measuring the vertex deletion distance to cluster graphs

    Scalable Online Betweenness Centrality in Evolving Graphs

    Full text link
    Betweenness centrality is a classic measure that quantifies the importance of a graph element (vertex or edge) according to the fraction of shortest paths passing through it. This measure is notoriously expensive to compute, and the best known algorithm runs in O(nm) time. The problems of efficiency and scalability are exacerbated in a dynamic setting, where the input is an evolving graph seen edge by edge, and the goal is to keep the betweenness centrality up to date. In this paper we propose the first truly scalable algorithm for online computation of betweenness centrality of both vertices and edges in an evolving graph where new edges are added and existing edges are removed. Our algorithm is carefully engineered with out-of-core techniques and tailored for modern parallel stream processing engines that run on clusters of shared-nothing commodity hardware. Hence, it is amenable to real-world deployment. We experiment on graphs that are two orders of magnitude larger than previous studies. Our method is able to keep the betweenness centrality measures up to date online, i.e., the time to update the measures is smaller than the inter-arrival time between two consecutive updates.Comment: 15 pages, 9 Figures, accepted for publication in IEEE Transactions on Knowledge and Data Engineerin

    Two betweenness centrality measures based on Randomized Shortest Paths

    Full text link
    This paper introduces two new closely related betweenness centrality measures based on the Randomized Shortest Paths (RSP) framework, which fill a gap between traditional network centrality measures based on shortest paths and more recent methods considering random walks or current flows. The framework defines Boltzmann probability distributions over paths of the network which focus on the shortest paths, but also take into account longer paths depending on an inverse temperature parameter. RSP's have previously proven to be useful in defining distance measures on networks. In this work we study their utility in quantifying the importance of the nodes of a network. The proposed RSP betweenness centralities combine, in an optimal way, the ideas of using the shortest and purely random paths for analysing the roles of network nodes, avoiding issues involving these two paradigms. We present the derivations of these measures and how they can be computed in an efficient way. In addition, we show with real world examples the potential of the RSP betweenness centralities in identifying interesting nodes of a network that more traditional methods might fail to notice.Comment: Minor updates; published in Scientific Report

    A Divide-and-Conquer Algorithm for Betweenness Centrality

    Full text link
    The problem of efficiently computing the betweenness centrality of nodes has been researched extensively. To date, the best known exact and centralized algorithm for this task is an algorithm proposed in 2001 by Brandes. The contribution of our paper is Brandes++, an algorithm for exact efficient computation of betweenness centrality. The crux of our algorithm is that we create a sketch of the graph, that we call the skeleton, by replacing subgraphs with simpler graph structures. Depending on the underlying graph structure, using this skeleton and by keeping appropriate summaries Brandes++ we can achieve significantly low running times in our computations. Extensive experimental evaluation on real life datasets demonstrate the efficacy of our algorithm for different types of graphs. We release our code for benefit of the research community.Comment: Shorter version of this paper appeared in Siam Data Mining 201
    • …
    corecore