17 research outputs found

    Robust Distributed Formation Control of UAVs with Higher-Order Dynamics

    Get PDF
    In this thesis, we introduce distributed formation control strategies to reach an intended linear formation for agents with a diverse array of dynamics. The suggested technique is distributed entirely, does not include inter-agent cooperation or a barrier of orientation, and can be applied using relative location information gained by agents in their local cooperation frames. We illustrate how the control optimized for agents with the simpler dynamic model, i.e., the dynamics of the single integrator, can be expanded to holonomic agents with higher dynamics such as quadrotors and non-holonomic agents such as unicycles and cars. Our suggested approach makes feedback saturations, unmodelled dynamics, and switches stable in the sensing topology. We also indicate that the control is relaxed as agents will travel along with a rotated and scaled control direction without disrupting the convergence to the desired formation. We can implement this observation to design a distributed strategy for preventing collisions. In simulations, we explain the suggested solution and further introduce a distributed robotic framework to experimentally validate the technique. Our experimental platform is made up of off-the-shelf devices that can be used to evaluate other multi-agent algorithms and verify them

    Long distance synchronization of mobile robots

    Full text link

    Remote control and motion coordination of mobile robots

    Get PDF
    As robots destined for personal and professional applications advance towards becoming part of our daily lives, the importance and complexity of the control algorithms which regulate them should not be underestimated. This thesis is related to two fields within robotics which are of major importance in this paradigm shift; namely, telerobotics and cooperative robotics. On the one hand, telerobotic systems support remote or dangerous tasks, whereas, on the other hand, the use of cooperative robotic systems supports distributed tasks and has several advantages with respect to the use of single-robot systems. The use of robotic systems in remote tasks implies in many cases the physical separation of the controller and the robot. This separation is advantageous when carrying out a variety of remote or hazardous tasks, but at the same time constitutes one of the main drawbacks of this type of robotic systems. Namely, as information is being relayed from the controller to the robot and back over the communication network, a time-delay unavoidably appears in the overall control loop. Hence, controller designs which guarantee the stability and performance of the robot even in the presence of the aforementioned time-delay become necessary in order to ensure a safe and reliable completion of the assigned tasks. On the other hand, using a group of robots to carry out a certain assignment, as compared to a single robot, provides several advantages such as an increased flexibility and the ability to complete distributed or more complex tasks. In order to successfully complete their collective task, the robots in the group generally need to coordinate their behavior by mutually exchanging information. When this information exchange takes place over a delay-inducing communication network, the consequences of the resulting time-delay must be taken into account. As a result, it is of great importance to design controllers which allow the group of robots to work together and complete their task in spite of the time-delay affecting their information exchange. The two control problems explained previously are addressed in this thesis. Firstly, the control of wheeled mobile robots over a delay-inducing communication network is considered by studying the remote tracking control problem for a unicycle-type mobile robot with communication delays. The most important issue to consider is that the communication delay in the control loop most probably compromises the performance and stability of the robot. In order to tackle this problem, a state estimator with a predictor-like structure is proposed. The state estimator is based on the notion of anticipating synchronization and, when acting in conjunction with a tracking control law, the resulting control strategy stabilizes the system and mitigates the negative effects of the time-delay. By exploiting existing results on nonlinear cascaded systems with time-delay, the local uniform asymptotic stability of the closed-loop tracking error dynamics is guaranteed up to a maximum admissible time-delay. Ultimately, explicit expressions which illustrate the relationship between the allowable time-delay and the control parameters of the robot are provided. Secondly, the coordination of a group of wheeled mobile robots over a delayinducing communication network is considered by studying the remote motion coordination problem for a group of unicycle-type mobile robots with a delayed information exchange between the robots. Specifically, master-slave and mutual motion coordination are considered. A controller design which allows the robots to maintain motion coordination even in the presence of a time-delay is proposed and the ensuing global stability analysis provides expressions which relate the control parameters of the robot and the allowable time-delay. The thesis places equal emphasis on theoretical developments and experimental results. In order to do so, the proposed control strategies are experimentally validated using the Internet as the communication network and multi-robot platforms located in Eindhoven, The Netherlands and Tokyo, Japan. To summarize, this thesis addresses two related control problems. On the one hand, we consider the tracking control of a wheeled mobile robot over a communication network which induces a time-delay. On the other hand, we focus on the motion coordination of a group of these robots under the consideration that the information exchange between the robots takes place over a delay-inducing communication network

    Spatial Formation Control

    Get PDF
    In this thesis, we study robust spatial formation control from several aspects. First, we study robust adaptive attitude synchronization for a network of rigid body agents using various attitude error functions defined on SO(3). Our results are particularly useful for networks with large initial attitude difference. We devise an adaptive geometric approach to cope with situations where the inertia matrices are not available for measurement. We use the Frobenius norm as a measure for the difference between the actual values of inertia matrices and their estimated values, to construct the individual adaptive laws of the agents. Compared to the previous methods for synchronization on SO(3) such as those which are based on quaternions, our proposed approach does not contain any attitude representation ambiguity. As the final part of our studies from the attitude synchronization aspect, we analyze robustness to external disturbances and unmodeled dynamics, and propose a method to attenuate such effects. Simulation results illustrate the effectiveness of the proposed approach. In the next part of the thesis, we study the distributed localization of the extremum point of unknown quadratic functions representing various physical or artificial signal potential fields. It is assumed that the value of such functions can be measured at each instant. Using high pass filtering of the measured signals, a linear parametric model is obtained for system identification. For design purposes, we add a consensus term to modify the identification subsystem. Next, we analyze the exponential convergence of the proposed estimation scheme using algebraic graph theory. In addition, we derive a distributed identifiability condition and use it for the construction of distributed extremum seeking control laws. In particular, we show that for a network of connected agents, if each agent contains a portion of the dithering signals, it is still possible to drive the system states to the extremum point provided that the distributed identifiability condition is satisfied. In the final part of this research, several robust control problems for general linear time invariant multi-agent systems are studied. We consider the robust consensus problem in the presence of unknown Lipschitz nonlinearities and polytopic uncertainties in the model of each agent. Next, this problem is solved in the presence of external disturbances. A set of control laws is proposed for the network to attain the consensus task and under the zero initial condition, achieves the desired H-infinity performance. We show that by implementing the modified versions of these control laws, it is possible to perform two-time scales formation control

    Coordination and Privacy Preservation in Multi-Agent Systems

    Get PDF
    This dissertation considers two key problems in multi-agent systems: coordination (including both synchronization and desynchronization) and privacy preservation. For coordination in multi-agent systems, we focus on synchronization/desynchronization of distributed pulse-coupled oscillator (PCO) networks and their applications in collective motion coordination. Pulse-coupled oscillators were originally proposed to model synchronization in biological systems such as flashing fireflies and firing neurons. In recent years, with proven scalability, simplicity, accuracy, and robustness, the PCO based synchronization strategy has become a powerful clock synchronization primitive for wireless sensor networks. Driven by these increased applications in biological networks and wireless sensor networks, synchronization of pulse-coupled oscillators has gained increased popularity. However, most existing results address the local synchronization of PCOs with initial phases constrained in a half cycle, and results on global synchronization from any initial condition are very sparse. In our work, we address global PCO synchronization from an arbitrary phase distribution under chain or directed tree graphs. More importantly, different from existing global synchronization studies on decentralized PCO networks, our work allows heterogeneous coupling functions and perturbations on PCOs\u27 natural frequencies, and our results hold under any coupling strength between zero and one, which is crucial because a large coupling strength has been shown to be detrimental to the robustness of PCO synchronization to disturbances. Compared with synchronization, desynchronization of PCOs is less explored. Desynchronization spreads the phase variables of all PCOs uniformly apart (with equal difference between neighboring phases). It has also been found in many biological phenomena, such as neuron spiking and fish signaling. Recently, phase desynchronization has been employed to achieve round-robin scheduling, which is crucial in applications as diverse as media access control of communication networks, realization of analog-to-digital converters, and scheduling of traffic flows in intersections. In our work, we systematically characterize pulse-coupled oscillators based decentralized phase desynchronization and propose an interaction function that is more general than existing results. Numerical simulations show that the proposed pulse based interaction function also has better robustness to pulse losses, time delays, and frequency errors than existing results. Collective motion coordination is fundamental in systems as diverse as mobile sensor networks, swarm robotics, autonomous vehicles, and animal groups. Inspired by the close relationship between phase synchronization/desynchronization of PCOs and the heading dynamics of connected vehicles/robots, we propose a pulse-based integrated communication and control approach for collective motion coordination. Our approach only employs simple and identical pulses, which significantly reduces processing latency and communication delay compared with conventional packet based communications. Not only can heading control be achieved in the proposed approach to coordinate the headings (orientations) of motions in a network, but also spacing control for circular motion is achievable to design the spacing between neighboring nodes (e.g., vehicles or robots). The second part of this dissertation is privacy preservation in multi-agent systems. More specifically, we focus on privacy-preserving average consensus as it is key for multi-agent systems, with applications ranging from time synchronization, information fusion, load balancing, to decentralized control. Existing average consensus algorithms require individual nodes (agents) to exchange explicit state values with their neighbors, which leads to the undesirable disclosure of sensitive information in the state. In our work, we propose a novel average consensus algorithm for time-varying directed graphs which can protect the privacy of participating nodes\u27 initial states. Leveraging algorithm-level obfuscation, the algorithm does not need the assistance of any trusted third party or data aggregator. By leveraging the inherent robustness of consensus dynamics against random variations in interaction, our proposed algorithm can guarantee privacy of participating nodes without compromising the accuracy of consensus. The algorithm is distinctly different from differential-privacy based average consensus approaches which enable privacy through compromising accuracy in obtained consensus value. The approach is able to protect the privacy of participating nodes even in the presence of multiple honest-but-curious nodes which can collude with each other

    Estimation and stability of nonlinear control systems under intermittent information with applications to multi-agent robotics

    Get PDF
    This dissertation investigates the role of intermittent information in estimation and control problems and applies the obtained results to multi-agent tasks in robotics. First, we develop a stochastic hybrid model of mobile networks able to capture a large variety of heterogeneous multi-agent problems and phenomena. This model is applied to a case study where a heterogeneous mobile sensor network cooperatively detects and tracks mobile targets based on intermittent observations. When these observations form a satisfactory target trajectory, a mobile sensor is switched to the pursuit mode and deployed to capture the target. The cost of operating the sensors is determined from the geometric properties of the network, environment and probability of target detection. The above case study is motivated by the Marco Polo game played by children in swimming pools. Second, we develop adaptive sampling of targets positions in order to minimize energy consumption, while satisfying performance guarantees such as increased probability of detection over time, and no-escape conditions. A parsimonious predictor-corrector tracking filter, that uses geometrical properties of targets\u27 tracks to estimate their positions using imperfect and intermittent measurements, is presented. It is shown that this filter requires substantially less information and processing power than the Unscented Kalman Filter and Sampling Importance Resampling Particle Filter, while providing comparable estimation performance in the presence of intermittent information. Third, we investigate stability of nonlinear control systems under intermittent information. We replace the traditional periodic paradigm, where the up-to-date information is transmitted and control laws are executed in a periodic fashion, with the event-triggered paradigm. Building on the small gain theorem, we develop input-output triggered control algorithms yielding stable closed-loop systems. In other words, based on the currently available (but outdated) measurements of the outputs and external inputs of a plant, a mechanism triggering when to obtain new measurements and update the control inputs is provided. Depending on the noise environment, the developed algorithm yields stable, asymptotically stable, and Lp-stable (with bias) closed-loop systems. Control loops are modeled as interconnections of hybrid systems for which novel results on Lp-stability are presented. Prediction of a triggering event is achieved by employing Lp-gains over a finite horizon in the small gain theorem. By resorting to convex programming, a method to compute Lp-gains over a finite horizon is devised. Next, we investigate optimal intermittent feedback for nonlinear control systems. Using the currently available measurements from a plant, we develop a methodology that outputs when to update the control law with new measurements such that a given cost function is minimized. Our cost function captures trade-offs between the performance and energy consumption of the control system. The optimization problem is formulated as a Dynamic Programming problem, and Approximate Dynamic Programming is employed to solve it. Instead of advocating a particular approximation architecture for Approximate Dynamic Programming, we formulate properties that successful approximation architectures satisfy. In addition, we consider problems with partially observable states, and propose Particle Filtering to deal with partially observable states and intermittent feedback. Finally, we investigate a decentralized output synchronization problem of heterogeneous linear systems. We develop a self-triggered output broadcasting policy for the interconnected systems. Broadcasting time instants adapt to the current communication topology. For a fixed topology, our broadcasting policy yields global exponential output synchronization, and Lp-stable output synchronization in the presence of disturbances. Employing a converse Lyapunov theorem for impulsive systems, we provide an average dwell time condition that yields disturbance-to-state stable output synchronization in case of switching topology. Our approach is applicable to directed and unbalanced communication topologies.\u2
    corecore