2,868 research outputs found

    Output consensus of nonlinear multi-agent systems with unknown control directions

    Get PDF
    In this paper, we consider an output consensus problem for a general class of nonlinear multi-agent systems without a prior knowledge of the agents' control directions. Two distributed Nussbaumtype control laws are proposed to solve the leaderless and leader-following adaptive consensus for heterogeneous multiple agents. Examples and simulations are given to verify their effectivenessComment: 10 pages;2 figure

    Consensus disturbance rejection for Lipschitz nonlinear multi-agent systems with input delay: a DOBC approach

    Get PDF
    In this paper, a new predictor-based consensus disturbance rejection method is proposed for high-order multi agent systems with Lipschitz nonlinearity and input delay. First, a distributed disturbance observer for consensus control is developed for each agent to estimate the disturbance under the delay constraint. Based on the conventional predictor feedback approach, a non-ideal predictor based control scheme is constructed for each agent by utilizing the estimate of the disturbance and the prediction of the relative state information. Then, rigorous analysis is carried out to ensure that the extra terms associated with disturbances and nonlinear functions are properly considered. Sufficient conditions for the consensus of the multi-agent systems with disturbance rejection are derived based on the analysis in the framework of Lyapunov-Krasovskii functionals. A simulation example is included to demonstrate the performance of the proposed control scheme. (C) 2016 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.National Natural Science Foundation of China [61673034]SCI(E)ARTICLE1,SI298-31535

    Data-Driven Architecture to Increase Resilience In Multi-Agent Coordinated Missions

    Get PDF
    The rise in the use of Multi-Agent Systems (MASs) in unpredictable and changing environments has created the need for intelligent algorithms to increase their autonomy, safety and performance in the event of disturbances and threats. MASs are attractive for their flexibility, which also makes them prone to threats that may result from hardware failures (actuators, sensors, onboard computer, power source) and operational abnormal conditions (weather, GPS denied location, cyber-attacks). This dissertation presents research on a bio-inspired approach for resilience augmentation in MASs in the presence of disturbances and threats such as communication link and stealthy zero-dynamics attacks. An adaptive bio-inspired architecture is developed for distributed consensus algorithms to increase fault-tolerance in a network of multiple high-order nonlinear systems under directed fixed topologies. In similarity with the natural organisms’ ability to recognize and remember specific pathogens to generate its immunity, the immunity-based architecture consists of a Distributed Model-Reference Adaptive Control (DMRAC) with an Artificial Immune System (AIS) adaptation law integrated within a consensus protocol. Feedback linearization is used to modify the high-order nonlinear model into four decoupled linear subsystems. A stability proof of the adaptation law is conducted using Lyapunov methods and Jordan decomposition. The DMRAC is proven to be stable in the presence of external time-varying bounded disturbances and the tracking error trajectories are shown to be bounded. The effectiveness of the proposed architecture is examined through numerical simulations. The proposed controller successfully ensures that consensus is achieved among all agents while the adaptive law v simultaneously rejects the disturbances in the agent and its neighbors. The architecture also includes a health management system to detect faulty agents within the global network. Further numerical simulations successfully test and show that the Global Health Monitoring (GHM) does effectively detect faults within the network
    • …
    corecore