294 research outputs found

    A distributed attitude control law for formation flying based on the Cucker-smale model

    Get PDF
    In this paper we consider the attitude synchronization problem for a swarm of spacecrafts flying in formation. Starting from previous works on consensus dynamics, we construct a distributed attitude control law and derive analytically sufficient conditions for the formation to converge asymptotically towards a synchronized, non–accelerating state (possibly defined a priori). Moreover, motivated by the results obtained on a particular consensus model, first introduced by F. Cucker and S. Smale to modellize the translational dynamics of flocks, we numerically explore the dependence of the convergence process on the dimension of the formation and the relative initial conditions of the spacecrafts. Finally, we generalize the class of weights defined by the previous authors in order to dampen the aforementioned effects, thus making our control law suitable for very large formations.Postprint (published version

    Adaptive Fuzzy Sliding Mode Controller for Attitude Coordinated Control in Spacecraft Formation

    Get PDF
    The attitude coordinated control problem of a spacecraft formation in leader-follower approach is considered in this paper. An adaptive fuzzy sliding mode control scheme is designed to achieve tracking and synchronization in spacecraft formation in the presence of model uncertainties and external disturbances. The proposed control law consists of two parts: equivalent control and switching control. In order to attenuate high-frequency chattering caused by the switching control, the adaptive fuzzy control is utilized to approximate the sign function of the switching control. Moreover, fuzzy rules are employed to smooth the switching control based on the sliding surface.Lyapunov theory is applied to proof the stability of the closedloop system. Finally, simulation results and comparative analysisare carried out to demonstrate the effectiveness of the proposed method

    Task space consensus in networks of heterogeneous and uncertain robotic systems with variable time-delays

    Get PDF
    This work deals with the leader-follower and the leaderless consensus problems in networks of multiple robot manipulators. The robots are non-identical, kinematically different (heterogeneous), and their physical parameters are uncertain. The main contribution of this work is a novel controller that solves the two consensus problems, in the task space, with the following features: it estimates the kinematic and the dynamic physical parameters; it is robust to interconnecting variable-time delays; it employs the singularity-free unit-quaternions to represent the orientation; and, using energy-like functions, the controller synthesis follows a constructive procedure. Simulations using a network with four heterogeneous manipulators illustrate the performance of the proposed controller.Peer ReviewedPostprint (author's final draft

    Synchronization of multiple rigid body systems: a survey

    Full text link
    The multi-agent system has been a hot topic in the past few decades owing to its lower cost, higher robustness, and higher flexibility. As a particular multi-agent system, the multiple rigid body system received a growing interest since its wide applications in transportation, aerospace, and ocean exploration. Due to the non-Euclidean configuration space of attitudes and the inherent nonlinearity of the dynamics of rigid body systems, synchronization of multiple rigid body systems is quite challenging. This paper aims to present an overview of the recent progress in synchronization of multiple rigid body systems from the view of two fundamental problems. The first problem focuses on attitude synchronization, while the second one focuses on cooperative motion control in that rotation and translation dynamics are coupled. Finally, a summary and future directions are given in the conclusion

    Cooperation Attitude Control as a Part of Spacecraft Formation Flying

    Get PDF
    Cooperative and coordination control for Autonomous Multi-Agent Systems (AMAS) are gaining more popularity and interest in many areas of aerospace engineering, such as air-traffic control, swarming satellites, launch/reentry-vehicle systems, and Formation Flying (FF). There are many advantages of cooperative control of autonomous FF of multiple small aerospace vehicles to replace a single large vehicle, such as increasing feasibility, reducing cost, probability of success, and significantly widening the operating area. For example, a group of cooperative Earth Observation radar satellites can enhance the overall resolution by observing backscattered signals from different angles compared to one giant costly satellite observing from one angle. Aerospace FF applications include distributed antennas, atmospheric sampling, and synthetic aperture radars. Besides, it is appealing to have robust and optimal control for space manufacturing and servicing. The Nano/microsatellites market is expected to grow as more companies develop smaller, cheaper launch vehicles. This paper demonstrates a model-based design for decentralized cooperation control as part of spacecraft formation flying using a single-integrator dynamic for deep space exploration missions

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    • …
    corecore