139 research outputs found

    Distributed, Secure Load Balancing with Skew, Heterogeneity, and Churn

    Get PDF
    Numerous proposals exist for load balancing in peer-to-peer (p2p) networks. Some focus on namespace balancing, making the distance between nodes as uniform as possible. This technique works well under ideal conditions, but not under those found empirically. Instead, researchers have found heavytailed query distributions (skew), high rates of node join and leave (churn), and wide variation in node network and storage capacity (heterogeneity). Other approaches tackle these less-thanideal conditions, but give up on important security properties. We propose an algorithm that both facilitates good performance and does not dilute security. Our algorithm, k-Choices, achieves load balance by greedily matching nodes’ target workloads with actual applied workloads through limited sampling, and limits any fundamental decrease in security by basing each nodes’ set of potential identifiers on a single certificate. Our algorithm compares favorably to four others in trace-driven simulations. We have implemented our algorithm and found that it improved aggregate throughput by 20% in a widely heterogeneous system in our experiments.Engineering and Applied Science

    Structured Overlay For Heterogeneous Environments: Design and Evaluation of Oscar

    Get PDF
    Recent years have seen advances in building large internet-scale index structures, generally known as structured overlays. Early structured overlays realized distributed hash tables (DHTs) which are ill suited for anything but exact queries. The need to support range queries necessitate systems which can handle uneven load distributions. However such systems suffer from practical problems - including poor latency, disproportionate bandwidth usage at participating peers or unrealistic assumptions on peers' homogeneity, in terms of available storage or bandwidth resources. In this paper we consider a system which is capable not only to support uneven load distributions but also to operate in heterogeneous environments, where each peer can autonomously decide how much of its resources to contribute to the system. We provide the theoretical foundations of realizing such a network and present a newly proposed system Oscar based on these principles. Oscar can construct efficient overlays given arbitrary load distributions by employing a novel scalable network sampling technique. The simulations of our system validate the theory and evaluate Oscar's performance under typical challenges encountered in real-life large-scale networked systems, including participant heterogeneity, faults and skewed and dynamic load-distributions. Thus the Oscar distributed index fills in an important gap in the family of structured overlays, bringing into life a practical internet-scale index, which can play a crucial role in enabling data-oriented applications distributed over wide-area networks

    Efficiency of Tree-Structured Peer-to-Peer Service Discovery Systems

    Get PDF
    The efficiency of service discovery is a crucial point in the development of fully decentralized middlewares intended to manage large scale computational grids. The work conducted on this issue led to the design of many peer-to-peer fashioned approaches. More specifically, the need for flexibility and complexity in the service discovery has seen the emergence of a new kind of overlays, based on tries, also known as lexicographic trees. Although these overlays are efficient and well designed, they require a costly maintenance and do not accurately take into account the heterogeneity of nodes and the changing popularity of the services requested by users. In this paper, we focus on reducing the cost of the maintenance of a particular architecture, based on a dynamic prefix tree, while enhancing it with some load balancing techniques that dynamically adapt the load of the nodes in order to maximize the throughput of the system. The algorithms developed couple a self-organizing prefix tree overlay with load balancing techniques inspired by similar previous works undertaken for distributed hash tables. After some simulation results showing how our load balancing heuristics perform in such an overlay and compare to other heuristics, we provide a fair comparison of this architecture and similar overlays recently proposed.L’efficacité de la découverte de services est un point crucial du développement d’intergiciels de grille totalement décentralisés. Les travaux ayant pour but la résolution de ce problème ont généré un certain nombre d’approches pair-à-pair. le besoin de flexibilité et d’expressivité a donné lieu au développement d’architecture s’appuyant sur des arbres de préfixes(ou arbres lexicographiques). Ces overlays souffrent d’une maintenance couteuse et ne prennent pas en compte la nature hétérogène de la plate-forme physique sous-jacente et la popularité différente et changeante de chaque ressource enregistrée.Dans ce rapport, nous nous focalisons sur la réduction du cout de maintenance d’une telle architecture, basée sur un arbre de préfixes dynamique,tout en lui donnant la possibilité de s’adapter à l’hétérogénéité précitée par l’enrichissant de mécanismes de répartition de la charge qui adaptent dynamiquement la charge des nœuds dans le but de maximiser le débit sur service. Notre approche couple des travaux de répartition de la charge dans les DHTs avec un overlay en arbre de préfixes auto-organisant. Après des résultats de simulation mettant en évidence l’efficacité de notre heuristique, nous comparons notre approche avec les travaux s’appuyant sur des structures distribuées similaires

    SoS: self-organizing substrates

    Get PDF
    Large-scale networked systems often, both by design or chance exhibit self-organizing properties. Understanding self-organization using tools from cybernetics, particularly modeling them as Markov processes is a first step towards a formal framework which can be used in (decentralized) systems research and design.Interesting aspects to look for include the time evolution of a system and to investigate if and when a system converges to some absorbing states or stabilizes into a dynamic (and stable) equilibrium and how it performs under such an equilibrium state. Such a formal framework brings in objectivity in systems research, helping discern facts from artefacts as well as providing tools for quantitative evaluation of such systems. This thesis introduces such formalism in analyzing and evaluating peer-to-peer (P2P) systems in order to better understand the dynamics of such systems which in turn helps in better designs. In particular this thesis develops and studies the fundamental building blocks for a P2P storage system. In the process the design and evaluation methodology we pursue illustrate the typical methodological approaches in studying and designing self-organizing systems, and how the analysis methodology influences the design of the algorithms themselves to meet system design goals (preferably with quantifiable guarantees). These goals include efficiency, availability and durability, load-balance, high fault-tolerance and self-maintenance even in adversarial conditions like arbitrarily skewed and dynamic load and high membership dynamics (churn), apart of-course the specific functionalities that the system is supposed to provide. The functionalities we study here are some of the fundamental building blocks for various P2P applications and systems including P2P storage systems, and hence we call them substrates or base infrastructure. These elemental functionalities include: (i) Reliable and efficient discovery of resources distributed over the network in a decentralized manner; (ii) Communication among participants in an address independent manner, i.e., even when peers change their physical addresses; (iii) Availability and persistence of stored objects in the network, irrespective of availability or departure of individual participants from the system at any time; and (iv) Freshness of the objects/resources' (up-to-date replicas). Internet-scale distributed index structures (often termed as structured overlays) are used for discovery and access of resources in a decentralized setting. We propose a rapid construction from scratch and maintenance of the P-Grid overlay network in a self-organized manner so as to provide efficient search of both individual keys as well as a whole range of keys, doing so providing good load-balancing characteristics for diverse kind of arbitrarily skewed loads - storage and replication, query forwarding and query answering loads. For fast overlay construction we employ recursive partitioning of the key-space so that the resulting partitions are balanced with respect to storage load and replication. The proper algorithmic parameters for such partitioning is derived from a transient analysis of the partitioning process which has Markov property. Preservation of ordering information in P-Grid such that queries other than exact queries, like range queries can be efficiently and rather trivially handled makes P-Grid suitable for data-oriented applications. Fast overlay construction is analogous to building an index on a new set of keys making P-Grid suitable as the underlying indexing mechanism for peer-to-peer information retrieval applications among other potential applications which may require frequent indexing of new attributes apart regular updates to an existing index. In order to deal with membership dynamics, in particular changing physical address of peers across sessions, the overlay itself is used as a (self-referential) directory service for maintaining the participating peers' physical addresses across sessions. Exploiting this self-referential directory, a family of overlay maintenance scheme has been designed with lower communication overhead than other overlay maintenance strategies. The notion of dynamic equilibrium study for overlays under continuous churn and repairs, modeled as a Markov process, was introduced in order to evaluate and compare the overlay maintenance schemes. While the self-referential directory was originally invented to realize overlay maintenance schemes with lower overheads than existing overlay maintenance schemes, the self-referential directory is generic in nature and can be used for various other purposes, e.g., as a decentralized public key infrastructure. Persistence of peer identity across sessions, in spite of changes in physical address, provides a logical independence of the overlay network from the underlying physical network. This has many other potential usages, for example, efficient maintenance mechanisms for P2P storage systems and P2P trust and reputation management. We specifically look into the dynamics of maintaining redundancy for storage systems and design a novel lazy maintenance strategy. This strategy is algorithmically a simple variant of existing maintenance strategies which adapts to the system dynamics. This randomized lazy maintenance strategy thus explores the cost-performance trade-offs of the storage maintenance operations in a self-organizing manner. We model the storage system (redundancy), under churn and maintenance, as a Markov process. We perform an equilibrium study to show that the system operates in a more stable dynamic equilibrium with our strategy than for the existing maintenance scheme for comparable overheads. Particularly, we show that our maintenance scheme provides substantial performance gains in terms of maintenance overhead and system's resilience in presence of churn and correlated failures. Finally, we propose a gossip mechanism which works with lower communication overhead than existing approaches for communication among a relatively large set of unreliable peers without assuming any specific structure for their mutual connectivity. We use such a communication primitive for propagating replica updates in P2P systems, facilitating management of mutable content in P2P systems. The peer population affected by a gossip can be modeled as a Markov process. Studying the transient spread of gossips help in choosing proper algorithm parameters to reduce communication overhead while guaranteeing coverage of online peers. Each of these substrates in themselves were developed to find practical solutions for real problems. Put together, these can be used in other applications, including a P2P storage system with support for efficient lookup and inserts, membership dynamics, content mutation and updates, persistence and availability. Many of the ideas have already been implemented in real systems and several others are in the way to be integrated into the implementations. There are two principal contributions of this dissertation. It provides design of the P2P systems which are useful for end-users as well as other application developers who can build upon these existing systems. Secondly, it adapts and introduces the methodology of analysis of a system's time-evolution (tools typically used in diverse domains including physics and cybernetics) to study the long run behavior of P2P systems, and uses this methodology to (re-)design appropriate algorithms and evaluate them. We observed that studying P2P systems from the perspective of complex systems reveals their inner dynamics and hence ways to exploit such dynamics for suitable or better algorithms. In other words, the analysis methodology in itself strongly influences and inspires the way we design such systems. We believe that such an approach of orchestrating self-organization in internet-scale systems, where the algorithms and the analysis methodology have strong mutual influence will significantly change the way future such systems are developed and evaluated. We envision that such an approach will particularly serve as an important tool for the nascent but fast moving P2P systems research and development community

    Data Storage and Dissemination in Pervasive Edge Computing Environments

    Get PDF
    Nowadays, smart mobile devices generate huge amounts of data in all sorts of gatherings. Much of that data has localized and ephemeral interest, but can be of great use if shared among co-located devices. However, mobile devices often experience poor connectivity, leading to availability issues if application storage and logic are fully delegated to a remote cloud infrastructure. In turn, the edge computing paradigm pushes computations and storage beyond the data center, closer to end-user devices where data is generated and consumed. Hence, enabling the execution of certain components of edge-enabled systems directly and cooperatively on edge devices. This thesis focuses on the design and evaluation of resilient and efficient data storage and dissemination solutions for pervasive edge computing environments, operating with or without access to the network infrastructure. In line with this dichotomy, our goal can be divided into two specific scenarios. The first one is related to the absence of network infrastructure and the provision of a transient data storage and dissemination system for networks of co-located mobile devices. The second one relates with the existence of network infrastructure access and the corresponding edge computing capabilities. First, the thesis presents time-aware reactive storage (TARS), a reactive data storage and dissemination model with intrinsic time-awareness, that exploits synergies between the storage substrate and the publish/subscribe paradigm, and allows queries within a specific time scope. Next, it describes in more detail: i) Thyme, a data storage and dis- semination system for wireless edge environments, implementing TARS; ii) Parsley, a flexible and resilient group-based distributed hash table with preemptive peer relocation and a dynamic data sharding mechanism; and iii) Thyme GardenBed, a framework for data storage and dissemination across multi-region edge networks, that makes use of both device-to-device and edge interactions. The developed solutions present low overheads, while providing adequate response times for interactive usage and low energy consumption, proving to be practical in a variety of situations. They also display good load balancing and fault tolerance properties.Resumo Hoje em dia, os dispositivos móveis inteligentes geram grandes quantidades de dados em todos os tipos de aglomerações de pessoas. Muitos desses dados têm interesse loca- lizado e efêmero, mas podem ser de grande utilidade se partilhados entre dispositivos co-localizados. No entanto, os dispositivos móveis muitas vezes experienciam fraca co- nectividade, levando a problemas de disponibilidade se o armazenamento e a lógica das aplicações forem totalmente delegados numa infraestrutura remota na nuvem. Por sua vez, o paradigma de computação na periferia da rede leva as computações e o armazena- mento para além dos centros de dados, para mais perto dos dispositivos dos utilizadores finais onde os dados são gerados e consumidos. Assim, permitindo a execução de certos componentes de sistemas direta e cooperativamente em dispositivos na periferia da rede. Esta tese foca-se no desenho e avaliação de soluções resilientes e eficientes para arma- zenamento e disseminação de dados em ambientes pervasivos de computação na periferia da rede, operando com ou sem acesso à infraestrutura de rede. Em linha com esta dico- tomia, o nosso objetivo pode ser dividido em dois cenários específicos. O primeiro está relacionado com a ausência de infraestrutura de rede e o fornecimento de um sistema efêmero de armazenamento e disseminação de dados para redes de dispositivos móveis co-localizados. O segundo diz respeito à existência de acesso à infraestrutura de rede e aos recursos de computação na periferia da rede correspondentes. Primeiramente, a tese apresenta armazenamento reativo ciente do tempo (ARCT), um modelo reativo de armazenamento e disseminação de dados com percepção intrínseca do tempo, que explora sinergias entre o substrato de armazenamento e o paradigma pu- blicação/subscrição, e permite consultas num escopo de tempo específico. De seguida, descreve em mais detalhe: i) Thyme, um sistema de armazenamento e disseminação de dados para ambientes sem fios na periferia da rede, que implementa ARCT; ii) Pars- ley, uma tabela de dispersão distribuída flexível e resiliente baseada em grupos, com realocação preventiva de nós e um mecanismo de particionamento dinâmico de dados; e iii) Thyme GardenBed, um sistema para armazenamento e disseminação de dados em redes multi-regionais na periferia da rede, que faz uso de interações entre dispositivos e com a periferia da rede. As soluções desenvolvidas apresentam baixos custos, proporcionando tempos de res- posta adequados para uso interativo e baixo consumo de energia, demonstrando serem práticas nas mais diversas situações. Estas soluções também exibem boas propriedades de balanceamento de carga e tolerância a faltas

    Characterizing Result Errors in Internet Desktop Grids

    Get PDF
    Desktop grids use the free resources in Intranet and Internet environments for large-scale computation and storage. While desktop grids offer a high return on investment, one critical issue is the validation of results returned by participating hosts. Several mechanisms for result validation have been previously proposed. However, the characterization of errors is poorly understood. To study error rates, we implemented and deployed a desktop grid application across several thousand hosts distributed over the Internet. We then analyzed the results to give quantitative, empirical characterization of errors rates. We find that in practice, error rates are widespread across hosts but occur relatively infrequently. Moreover, we find that error rates tend to not be stationary over time nor correlated between hosts. In light of these characterization results, we evaluated state-of-the-art error detection mechanisms and describe the trade-offs for using each mechanism. Finally, based on our empirical results, we conduct a benefit analysis of a recently proposed mechanism for error detection tailored for long-running applications. This mechanism is based on using the digest of intermediate checkpoints, and we show in theory and simulation that the relative benefit of this method compared to the state-of-the-art is as high as 45\%

    The Cooperative Defense Overlay Network: A Collaborative Automated Threat Information Sharing Framework for a Safer Internet

    Get PDF
    With the ever-growing proliferation of hardware and software-based computer security exploits and the increasing power and prominence of distributed attacks, network and system administrators are often forced to make a difficult decision: expend tremendous resources on defense from sophisticated and continually evolving attacks from an increasingly dangerous Internet with varying levels of success; or expend fewer resources on defending against common attacks on "low hanging fruit," hoping to avoid the less common but incredibly devastating zero-day worm or botnet attack. Home networks and small organizations are usually forced to choose the latter option and in so doing are left vulnerable to all but the simplest of attacks. While automated tools exist for sharing information about network-based attacks, this sharing is typically limited to administrators of large networks and dedicated security-conscious users, to the exclusion of smaller organizations and novice home users. In this thesis we propose a framework for a cooperative defense overlay network (CODON) in which participants with varying technical abilities and resources can contribute to the security and health of the internet via automated crowdsourcing, rapid information sharing, and the principle of collateral defense

    Routing Attacks in Wireless Sensor Networks: A Survey

    Full text link
    Wireless Sensor Networks (WSN) is an emerging technology now-a-days and has a wide range of applications such as battlefield surveillance, traffic surveillance, forest fire detection, flood detection etc. But wireless sensor networks are susceptible to a variety of potential attacks which obstructs the normal operation of the network. The security of a wireless sensor network is compromised because of the random deployment of sensor nodes in open environment, memory limitations, power limitations and unattended nature. This paper focuses on various attacks that manifest in the network and provides a tabular representation of the attacks, their effects and severity. The paper depicts a comparison of attacks basis packet loss and packet corruption. Also, the paper discusses the known defence mechanisms and countermeasures against the attacks.Comment: IJCSIT April 201

    Autonomic Rejuvenation of Cloud Applications as a Countermeasure to Software Anomalies

    Get PDF
    Failures in computer systems can be often tracked down to software anomalies of various kinds. In many scenarios, it could be difficult, unfeasible, or unprofitable to carry out extensive debugging activity to spot the causes of anomalies and remove them. In other cases, taking corrective actions may led to undesirable service downtime. In this article we propose an alternative approach to cope with the problem of software anomalies in cloud-based applications, and we present the design of a distributed autonomic framework that implements our approach. It exploits the elastic capabilities of cloud infrastructures, and relies on machine learning models, proactive rejuvenation techniques and a new load balancing approach. By putting together all these elements, we show that it is possible to improve both availability and performance of applications deployed over heterogeneous cloud regions and subject to frequent failures. Overall, our study demonstrates the viability of our approach, thus opening the way towards it adoption, and encouraging further studies and practical experiences to evaluate and improve it
    • …
    corecore