28,388 research outputs found

    Adaptive Distributed Resource Allocation in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks have emerged as a promising technology for a wide range of important applications. A major research challenge in this field is the distributed resource allocation problem, which concerns how the limited resources in a wireless sensor network should be allocated or scheduled to minimize costs and maximize the network capability. In this paper, we propose the Adaptive Distributed Resource Allocation (ADRA) scheme, an adaptive approach for distributed resource allocation in wireless sensor networks. Our scheme specifies relatively simple local actions to be performed by individual sensor nodes in a wireless sensor network for mode management. Each node adapts its operation over time in response to the status and feedback of its neighboring nodes. Desirable global behavior results from the local interactions between nodes. We study the effectiveness of the ADRA scheme for a realistic application scenario; namely, the sensor mode management in an acoustic sensor network to track vehicle movement. We evaluated the scheme via simulations, and also prototyped it using the Crossbow MICA2 motes. Our simulation and hardware implementation results indicate that the ADRA scheme provides a good tradeoff between performance objectives such as coverage area, power consumption, and network lifetime.Singapore-MIT Alliance (SMA

    Spatial Whitening Framework for Distributed Estimation

    Full text link
    Designing resource allocation strategies for power constrained sensor network in the presence of correlated data often gives rise to intractable problem formulations. In such situations, applying well-known strategies derived from conditional-independence assumption may turn out to be fairly suboptimal. In this paper, we address this issue by proposing an adjacency-based spatial whitening scheme, where each sensor exchanges its observation with their neighbors prior to encoding their own private information and transmitting it to the fusion center. We comment on the computational limitations for obtaining the optimal whitening transformation, and propose an iterative optimization scheme to achieve the same for large networks. We demonstrate the efficacy of the whitening framework by considering the example of bit-allocation for distributed estimation.Comment: 4 pages, 2 figures, this paper has been presented at CAMSAP 2011; Proc. 4th Intl. Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2011), San Juan, Puerto Rico, Dec 13-16, 201

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the ā€œUnified Clustering and Communication Protocol ā€ (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms ā€” wireless sensor networks, unified communication, optimization, clustering and quality of service

    Task allocation in group of nodes in the IoT: A consensus approach

    Get PDF
    The realization of the Internet of Things (IoT) paradigm relies on the implementation of systems of cooperative intelligent objects with key interoperability capabilities. In order for objects to dynamically cooperate to IoT applications' execution, they need to make their resources available in a flexible way. However, available resources such as electrical energy, memory, processing, and object capability to perform a given task, are often limited. Therefore, resource allocation that ensures the fulfilment of network requirements is a critical challenge. In this paper, we propose a distributed optimization protocol based on consensus algorithm, to solve the problem of resource allocation and management in IoT heterogeneous networks. The proposed protocol is robust against links or nodes failures, so it's adaptive in dynamic scenarios where the network topology changes in runtime. We consider an IoT scenario where nodes involved in the same IoT task need to adjust their task frequency and buffer occupancy. We demonstrate that, using the proposed protocol, the network converges to a solution where resources are homogeneously allocated among nodes. Performance evaluation of experiments in simulation mode and in real scenarios show that the algorithm converges with a percentage error of aboutĀ±5% with respect to the optimal allocation obtainable with a centralized approach

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Collaborative signal and information processing for target detection with heterogeneous sensor networks

    Get PDF
    In this paper, an approach for target detection and acquisition with heterogeneous sensor networks through strategic resource allocation and coordination is presented. Based on sensor management and collaborative signal and information processing, low-capacity low-cost sensors are strategically deployed to guide and cue scarce high performance sensors in the network to improve the data quality, with which the mission is eventually completed more efficiently with lower cost. We focus on the problem of designing such a network system in which issues of resource selection and allocation, system behaviour and capacity, target behaviour and patterns, the environment, and multiple constraints such as the cost must be addressed simultaneously. Simulation results offer significant insight into sensor selection and network operation, and demonstrate the great benefits introduced by guided search in an application of hunting down and capturing hostile vehicles on the battlefield
    • ā€¦
    corecore