67 research outputs found

    Transmission of 3D Scenes over Lossy Channels

    Get PDF
    This paper introduces a novel error correction scheme for the transmission of three-dimensional scenes over unreliable networks. We propose a novel Unequal Error Protection scheme for the transmission of depth and texture information that distributes a prefixed amount of redundancy among the various elements of the scene description in order to maximize the quality of the rendered views. This target is achieved exploiting also a new model for the estimation of the impact on the rendered views of the various geometry and texture packets which takes into account their relevance in the coded bitstream and the viewpoint required by the user. Experimental results show how the proposed scheme effectively enhances the quality of the rendered images in a typical depth-image-based rendering scenario as packets are progressively decoded/recovered by the receiver

    Live video streaming over packet networks and wireless channels

    No full text
    The transmission of live video over noisy channels requires very low end-to-end delay. Although automatic repeat request ensures lossless transmission, its usefulness to live video streaming is restricted to short connections because of the unbounded retransmission latency. An alternative is to use forward error correction (FEC). Since finding an optimal error protection strategy can be time expensive, FEC systems are commonly designed for the worst case condition of the channel, which limits the end-to-end performance. We study the suitability of two scalable FEC-based systems to the transmission of live video over packet networks. The first one uses Reed-Solomon codes and is appropriate for the Internet. The second one uses a product channel code and is appropriate for wireless channels. We show how fast and robust transmission can be achieved by exploiting a parametric model for the distortion-rate curve of the source coder and by using fast joint source-channel allocation algorithms. Experimental results for the 3D set partitioning in hierarchical tree video coder show that the systems have good reconstruction quality even in severe channel conditions. Finally, we compare the performance of the systems to the state-of-the-art for video transmission over the Internet. 1

    Implementation issues in source coding

    Get PDF
    An edge preserving image coding scheme which can be operated in both a lossy and a lossless manner was developed. The technique is an extension of the lossless encoding algorithm developed for the Mars observer spectral data. It can also be viewed as a modification of the DPCM algorithm. A packet video simulator was also developed from an existing modified packet network simulator. The coding scheme for this system is a modification of the mixture block coding (MBC) scheme described in the last report. Coding algorithms for packet video were also investigated

    Progressive Source-Channel Coding for Multimedia Transmission over Noisy and Lossy Channels with and without Feedback

    Get PDF
    Rate-scalable or layered lossy source-coding is useful for progressive transmission of multimedia sources, where the receiver can reconstruct the source incrementally. This thesis considers ``joint source-channel'' schemes for such a progressive transmission, in the presence of noise or loss, with and without the use of a feedback link. First we design image communication schemes for memoryless and finite state channels using limited and explicitly constrained use of the feedback channel in the form of a variable incremental redundancy Hybrid ARQ protocol. Constraining feedback allows a direct comparison with schemes without feedback. Optimized feedback based systems are shown to have useful gains. Second, we develop a controlled Markov chain approach for constrained feedback Hybrid ARQ protocol design. The proposed methodology allows the protocol to be chosen from a collection of signal flow graphs, and also allows explicit control over the tradeoffs in throughput, reliability and complexity. Next we consider progressive image transmission in the absence of feedback. We assign unequal error protection to the bits of a rate-scalable source-coder using rate compatible channel codes. We show that, under the framework, the source and channel bits can be ``scheduled'' in a single bitstream in such a way that operational optimality is retained for different transmission budgets, creating a rate-scalable joint source-channel coder. Next we undertake the design of a joint source-channel decoder that uses ``distortion aware'' ACK/NACK feedback generation. For memoryless channels, and Type-I HARQ, the design of optimal ACK/NACK generation and decoding by packet combining is cast and solved as a sequential decision problem. We obtain dynamic programming based optimal solutions and also propose suboptimal, lower complexity distortion-aware decoders and feedback generation rules which outperform conventional BER based rules such as CRC-check. Finally we design operational rate-distortion optimal ACK/NACK feedback generation rules for transmitting a tree structured quantizer over a memoryless channel. We show that the optimal feedback generation rules are embedded, that is, they allow incremental switching to higher rates during the transmission. Also, we obtain the structure of the feedback generation rules in terms of a feedback threshold function that simplifies the implementation

    A robust coding scheme for packet video

    Get PDF
    We present a layered packet video coding algorithm based on a progressive transmission scheme. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented

    Optimized Transmission of JPEG2000 Streams Over Wireless Channels

    Get PDF
    The transmission of JPEG2000 images over wireless channels is examined using reorganization of the compressed images into error-resilient, product-coded streams. The product-code consists of Turbo-codes and Reed-Solomon codes which are optimized using an iterative process. The generation of the stream to be transmitted is performed directly using compressed JPEG2000 streams. The resulting scheme is tested for the transmission of compressed JPEG2000 images over wireless channels and is shown to outperform other algorithms which were recently proposed for the wireless transmission of images

    Channel coding for progressive images in a 2-D time-frequency OFDM block with channel estimation errors.

    Get PDF
    Coding and diversity are very effective techniques for improving transmission reliability in a mobile wireless environment. The use of diversity is particularly important for multimedia communications over fading channels. In this work, we study the transmission of progressive image bitstreams using channel coding in a 2-D time-frequency resource block in an OFDM network, employing time and frequency diversities simultaneously. In particular, in the frequency domain, based on the order of diversity and the correlation of individual subcarriers, we construct symmetric n -channel FEC-based multiple descriptions using channel erasure codes combined with embedded image coding. In the time domain, a concatenation of RCPC codes and CRC codes is employed to protect individual descriptions. We consider the physical channel conditions arising from various coherence bandwidths and coherence times, leading to a range of orders of diversities available in the time and frequency domains. We investigate the effects of different error patterns on the delivered image quality due to various fade rates. We also study the tradeoffs and compare the relative effectiveness associated with the use of erasure codes in the frequency domain and convolutional codes in the time domain under different physical environments. Both the effects of intercarrier interference and channel estimation errors are included in our study. Specifically, the effects of channel estimation errors, frequency selectivity and the rate of the channel variations are taken into consideration for the construction of the 2-D time-frequency block. We provide results showing the gain that the proposed model achieves compared to a system without temporal coding. In one example, for a system experiencing flat fading, low Doppler, and imperfect CSI, we find that the increase in PSNR compared to a system without time diversity is as much as 9.4 dB

    Wireless Image Transmission Using Turbo Codes and Optimal Unequal Error Protection

    Get PDF
    A novel image transmission scheme is proposed for the communication of SPIHT image streams over wireless channels. The proposed scheme employs turbo codes and Reed-Solomon codes in order to deal effectively with burst errors. An algorithm for the optimal unequal error protection of the compressed bitstream is also proposed and applied in conjunction with an inherently more efficient technique for product code decoding. The resulting scheme is tested for the transmission of images over wireless channels. Experimental evaluation clearly demonstrates the superiority of the proposed transmission system in comparison to well-known robust coding schemes

    Layered Wyner-Ziv video coding for noisy channels

    Get PDF
    The growing popularity of video sensor networks and video celluar phones has generated the need for low-complexity and power-efficient multimedia systems that can handle multiple video input and output streams. While standard video coding techniques fail to satisfy these requirements, distributed source coding is a promising technique for ??uplink?? applications. Wyner-Ziv coding refers to lossy source coding with side information at the decoder. Based on recent theoretical result on successive Wyner-Ziv coding, we propose in this thesis a practical layered Wyner-Ziv video codec using the DCT, nested scalar quantizer, and irregular LDPC code based Slepian-Wolf coding (or lossless source coding with side information) for noiseless channel. The DCT is applied as an approximation to the conditional KLT, which makes the components of the transformed block conditionally independent given the side information. NSQ is a binning scheme that facilitates layered bit-plane coding of the bin indices while reducing the bit rate. LDPC code based Slepian-Wolf coding exploits the correlation between the quantized version of the source and the side information to achieve further compression. Different from previous works, an attractive feature of our proposed system is that video encoding is done only once but decoding allowed at many lower bit rates without quality loss. For Wyner-Ziv coding over discrete noisy channels, we present a Wyner-Ziv video codec using IRA codes for Slepian-Wolf coding based on the idea of two equivalent channels. For video streaming applications where the channel is packet based, we apply unequal error protection scheme to the embedded Wyner-Ziv coded video stream to find the optimal source-channel coding trade-off for a target transmission rate over packet erasure channel

    Product Code Optimization for Determinate State LDPC Decoding in Robust Image Transmission

    Get PDF
    We propose a novel scheme for error resilient image transmission. The proposed scheme employs a product coder consisting of LDPC codes and RS codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the art techniques for image transmission
    • …
    corecore