334 research outputs found

    Secure Transmission in Wireless Sensor Networks Data Using Linear Kolmogorov Watermarking Technique

    Full text link
    In Wireless sensor networks (WSNs), All communications between different nodes are sent out in a broadcast fashion. These networks are used in a variety of applications including military, environmental, and smart spaces. Sensors are susceptible to various types of attack, such as data modification, data insertion and deletion, or even physical capture and sensor replacement. Hence security becomes important issue in WSNs. However given the fact that sensors are resources constrained, hence the traditional intensive security algorithms are not well suited for WSNs. This makes traditional security techniques, based on data encryption, not very suitable for WSNs. This paper proposes Linear Kolmogorov watermarking technique for secure data communication in WSNs. We provide a security analysis to show the robustness of the proposed techniques against various types of attacks. This technique is robust against data deletion, packet replication and Sybil attack

    QUALITY-DRIVEN CROSS LAYER DESIGN FOR MULTIMEDIA SECURITY OVER RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS

    Get PDF
    The strong need for security guarantee, e.g., integrity and authenticity, as well as privacy and confidentiality in wireless multimedia services has driven the development of an emerging research area in low cost Wireless Multimedia Sensor Networks (WMSNs). Unfortunately, those conventional encryption and authentication techniques cannot be applied directly to WMSNs due to inborn challenges such as extremely limited energy, computing and bandwidth resources. This dissertation provides a quality-driven security design and resource allocation framework for WMSNs. The contribution of this dissertation bridges the inter-disciplinary research gap between high layer multimedia signal processing and low layer computer networking. It formulates the generic problem of quality-driven multimedia resource allocation in WMSNs and proposes a cross layer solution. The fundamental methodologies of multimedia selective encryption and stream authentication, and their application to digital image or video compression standards are presented. New multimedia selective encryption and stream authentication schemes are proposed at application layer, which significantly reduces encryption/authentication complexity. In addition, network resource allocation methodologies at low layers are extensively studied. An unequal error protection-based network resource allocation scheme is proposed to achieve the best effort media quality with integrity and energy efficiency guarantee. Performance evaluation results show that this cross layer framework achieves considerable energy-quality-security gain by jointly designing multimedia selective encryption/multimedia stream authentication and communication resource allocation

    Foreword and editorial - July issue

    Full text link

    Data sharing in secure multimedia wireless sensor networks

    Full text link
    © 2016 IEEE. The use of Multimedia Wireless Sensor Networks (MWSNs) is becoming common nowadays with a rapid growth in communication facilities. Similar to any other WSNs, these networks face various challenges while providing security, trust and privacy for user data. Provisioning of the aforementioned services become an uphill task especially while dealing with real-time streaming data. These networks operates with resource-constrained sensor nodes for days, months and even years depending on the nature of an application. The resource-constrained nature of these networks makes it difficult for the nodes to tackle real-time data in mission-critical applications such as military surveillance, forest fire monitoring, health-care and industrial automation. For a secured MWSN, the transmission and processing of streaming data needs to be explored deeply. The conventional data authentication schemes are not suitable for MWSNs due to the limitations imposed on sensor nodes in terms of battery power, computation, available bandwidth and storage. In this paper, we propose a novel quality-driven clustering-based technique for authenticating streaming data in MWSNs. Nodes with maximum energy are selected as Cluster Heads (CHs). The CHs collect data from member nodes and forward it to the Base Station (BS), thus preventing member nodes with low energy from dying soon and increasing life span of the underlying network. The proposed approach not only authenticates the streaming data but also maintains the quality of transmitted data. The proposed data authentication scheme coupled with an Error Concealment technique provides an energy-efficient and distortion-free real-time data streaming. The proposed scheme is compared with an unsupervised resources scenario. The simulation results demonstrate better network lifetime along with 21.34 dB gain in Peak Signal-to-Noise Ratio (PSNR) of received video data streams

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims

    A contrast-sensitive reversible visible image watermarking technique

    Get PDF
    A reversible (also called lossless, distortion-free, or invertible) visible watermarking scheme is proposed to satisfy the applications, in which the visible watermark is expected to combat copyright piracy but can be removed to losslessly recover the original image. We transparently reveal the watermark image by overlapping it on a user-specified region of the host image through adaptively adjusting the pixel values beneath the watermark, depending on the human visual system-based scaling factors. In order to achieve reversibility, a reconstruction/ recovery packet, which is utilized to restore the watermarked area, is reversibly inserted into non-visibly-watermarked region. The packet is established according to the difference image between the original image and its approximate version instead of its visibly watermarked version so as to alleviate its overhead. For the generation of the approximation, we develop a simple prediction technique that makes use of the unaltered neighboring pixels as auxiliary information. The recovery packet is uniquely encoded before hiding so that the original watermark pattern can be reconstructed based on the encoded packet. In this way, the image recovery process is carried out without needing the availability of the watermark. In addition, our method adopts data compression for further reduction in the recovery packet size and improvement in embedding capacity. The experimental results demonstrate the superiority of the proposed scheme compared to the existing methods
    • 

    corecore