667 research outputs found

    An efficient error resilience scheme based on wyner-ziv coding for region-of-Interest protection of wavelet based video transmission

    Get PDF
    In this paper, we propose a bandwidth efficient error resilience scheme for wavelet based video transmission over wireless channel by introducing an additional Wyner-Ziv (WZ) stream to protect region of interest (ROI) in a frame. In the proposed architecture, the main video stream is compressed by a generic wavelet domain coding structure and passed through the error prone channel without any protection. Meanwhile, the predefined ROI area related wavelet coefficients obtained after an integer wavelet transform will be specially protected by WZ codec in an additional channel during transmission. At the decoder side, the error-prone ROI related wavelet coefficients will be used as side information to help decoding the WZ stream. Different size of WZ bit streams can be applied in order to meet different bandwidth condition and different requirement of end users. The simulation results clearly revealed that the proposed scheme has distinct advantages in saving bandwidth comparing with fully applied FEC algorithm to whole video stream and in the meantime offer the robust transmission over error prone channel for certain video applications

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Complexity scalable bitplane image coding with parallel coefficient processing

    Get PDF
    Very fast image and video codecs are a pursued goal both in the academia and the industry. This paper presents a complexity scalable and parallel bitplane coding engine for wavelet-based image codecs. The proposed method processes the coefficients in parallel, suiting hardware architectures based on vector instructions. Our previous work is extended with a mechanism that provides complexity scalability to the system. Such a feature allows the coder to regulate the throughput achieved at the expense of slightly penalizing compression effi- ciency. Experimental results suggests that, when using the fastest speed, the method almost doubles the throughput of our previous engine while penalizing compression efficiency by about 10

    GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000

    Get PDF
    Modern image and video compression standards employ computationally intensive algorithms that provide advanced features to the coding system. Current standards often need to be implemented in hardware or using expensive solutions to meet the real-time requirements of some environments. Contrarily to this trend, this paper proposes an end-to-end codec architecture running on inexpensive Graphics Processing Units (GPUs) that is based on, though not compatible with, the JPEG2000 international standard for image and video compression. When executed in a commodity Nvidia GPU, it achieves real time processing of 12K video. The proposed S/W architecture utilizes four CUDA kernels that minimize memory transfers, use registers instead of shared memory, and employ a double-buffer strategy to optimize the streaming of data. The analysis of throughput indicates that the proposed codec yields results at least 10× superior on average to those achieved with JPEG2000 implementations devised for CPUs, and approximately 4× superior to those achieved with hardwired solutions of the HEVC/H.265 video compression standard

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Real-time scalable video coding for surveillance applications on embedded architectures

    Get PDF

    Efficient error control in 3D mesh coding

    Get PDF
    Our recently proposed wavelet-based L-infinite-constrained coding approach for meshes ensures that the maximum error between the vertex positions in the original and decoded meshes is guaranteed to be lower than a given upper bound. Instantiations of both L-2 and L-infinite coding approaches are demonstrated for MESHGRID, which is a scalable 3D object encoding system, part of MPEG-4 AFX. In this survey paper, we compare the novel L-infinite distortion estimator against the L-2 distortion estimator which is typically employed in 3D mesh coding systems. In addition, we show that, under certain conditions, the L-infinite estimator can be exploited to approximate the Hausdorff distance in real-time implementation

    Contemporary Affirmation of SPIHT Improvements in Image Coding

    Get PDF
    Set partitioning in hierarchal trees (SPIHT) is actually a widely-used compression algorithm for wavelet altered images. On most algorithms developed, SPIHT algorithm from the time its introduction in 1996 for image compression has got lots of interest. Though SPIHT is considerably simpler and efficient than several present compression methods since it's a completely inserted codec, provides good image quality, large PSNR, optimized for modern image transmission, efficient conjunction with error defense, form information on demand and hence element powerful error correction decreases from starting to finish but still it has some downsides that need to be taken away for its better use therefore since its development it has experienced many adjustments in its original model. This document presents a survey on several different improvements in SPIHT in certain fields as velocity, redundancy, quality, error resilience, sophistication, and compression ratio and memory requirement
    corecore