286 research outputs found

    COMIT: identification of noncoding motifs under selection in coding sequences

    Get PDF
    COMIT is presented; an algorithm for detecting functional non-coding motifs in coding regions, separating nucleotide and amino acid effects

    Current tools for the identification of miRNA genes and their targets

    Get PDF
    The discovery of microRNAs (miRNAs), almost 10 years ago, changed dramatically our perspective on eukaryotic gene expression regulation. However, the broad and important functions of these regulators are only now becoming apparent. The expansion of our catalogue of miRNA genes and the identification of the genes they regulate owe much to the development of sophisticated computational tools that have helped either to focus or interpret experimental assays. In this article, we review the methods for miRNA gene finding and target identification that have been proposed in the last few years. We identify some problems that current approaches have not yet been able to overcome and we offer some perspectives on the next generation of computational methods

    The specificity and evolution of gene regulatory elements

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Computational and Systems Biology Program, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references.The regulation of gene expression underlies the morphological, physiological, and functional differences between human cell types, developmental stages, and healthy and disease states. Gene regulation in eukaryotes is controlled by a complex milieu including transcription factors, microRNAs (miRNAs), cis-regulatory DNA and RNA. It is the quantitative and combinatorial interactions of these regulatory elements that defines gene expression, but these interactions are incompletely understood. In this thesis, I present two new methods for determining the quantitative specificity of gene regulatory factors. First, I present a comparative genomics approach that utilizes signatures of natural selection to detect the conserved biological relevance of miRNAs and their targets. Using this method, I quantify the abundance of different conserved miRNA target types, including different seed matches and 30-compensatory targets. I show that over 60% of mammalian mRNAs are conserved targets of miRNAs and that a surprising amount of conserved miRNA targeting is mediated by seed matches with relatively low efficacy. Extending this method from mammals to other organisms, I find that miRNA targeting rules are mostly conserved, although I show evidence for new types of miRNA targets in nematodes. Taking advantage of variations in 30 UTR lengths between species, I describe general properties of miRNA targeting that are affected by 30 UTR length. Finally, I introduce a new, high-throughput assay for the quantification of transcription factor in vitro binding affinity to millions of sequences. I apply this method to GCN4, a yeast transcription factor, and reconstruct all known properties of its binding preferences. Additionally, I discover some new subtleties in its specificity and estimate dissociation constants for hundreds of thousands of sequences. I verify the utility of the binding affinities by comparing to in vivo binding data and to the regulatory response following GCN4 induction.by Robin Carl Friedman.Ph.D

    GraphProt: modeling binding preferences of RNA-binding proteins

    Get PDF
    We present GraphProt, a computational framework for learning sequence- and structure-binding preferences of RNA-binding proteins (RBPs) from high-throughput experimental data. We benchmark GraphProt, demonstrating that the modeled binding preferences conform to the literature, and showcase the biological relevance and two applications of GraphProt models. First, estimated binding affinities correlate with experimental measurements. Second, predicted Ago2 targets display higher levels of expression upon Ago2 knockdown, whereas control targets do not. Computational binding models, such as those provided by GraphProt, are essential for predicting RBP binding sites and affinities in all tissues. GraphProt is freely available at http://www.bioinf.uni-freiburg.de/Software/GraphProt

    Using a kernel density estimation based classifier to predict species-specific microRNA precursors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are short non-coding RNA molecules participating in post-transcriptional regulation of gene expression. There have been many efforts to discover miRNA precursors (pre-miRNAs) over the years. Recently, <it>ab initio </it>approaches obtain more attention because that they can discover species-specific pre-miRNAs. Most <it>ab initio </it>approaches proposed novel features to characterize RNA molecules. However, there were fewer discussions on the associated classification mechanism in a miRNA predictor.</p> <p>Results</p> <p>This study focuses on the classification algorithm for miRNA prediction. We develop a novel <it>ab initio </it>method, miR-KDE, in which most of the features are collected from previous works. The classification mechanism in miR-KDE is the relaxed variable kernel density estimator (RVKDE) that we have recently proposed. When compared to the famous support vector machine (SVM), RVKDE exploits more local information of the training dataset. MiR-KDE is evaluated using a training set consisted of only human pre-miRNAs to predict a benchmark collected from 40 species. The experimental results show that miR-KDE delivers favorable performance in predicting human pre-miRNAs and has advantages for pre-miRNAs from the genera taxonomically distant to humans.</p> <p>Conclusion</p> <p>We use a novel classifier of which the characteristic of exploiting local information is particularly suitable to predict species-specific pre-miRNAs. This study also provides a comprehensive analysis from the view of classification mechanism. The good performance of miR-KDE encourages more efforts on the classification methodology as well as the feature extraction in miRNA prediction.</p

    Deciphering the Hidden Language of Long Non-Coding RNAs: Recent Findings and Challenges

    Get PDF
    Long non-coding RNAs (lncRNAs) are crucial non-coding RNA genes involved in diverse cellular processes. However, the mechanisms underlying their emergence and functions remain incompletely understood. A major challenge in the field is to understand how lncRNA sequences affect their function. In recent years, comprehensive genetic and genomic studies have started to unfold the function of lncRNAs through their interactions, cellular organization, and structure. This comprehensive review delves into the intricate interplay between lncRNA sequences and their functional implications. Unlike other RNA types, lncRNAs exhibit a complex syntax, employing diverse functional elements such as protein recognition and miRNA binding sites, repeat elements, secondary structures, and non-canonical interactions with RNA and DNA binding proteins. By unraveling the hidden language that governs the function and classification of lncRNAs, we aim to shed light on the underlying principles shaping their diverse functions. Through a detailed examination of the intricate relationship between lncRNA sequences and their biological effects, this review offers insights into the sequences underlying lncRNA functionality. Understanding the unique sequence characteristics and functional elements employed by lncRNAs has the potential to advance our knowledge of gene regulation and cellular processes, providing a foundation for the development of novel therapeutic strategies and targeted interventions

    ์ƒ๋ฌผํ•™์  ์„œ์—ด ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ํ‘œํ˜„ ํ•™์Šต

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021.8. ์œค์„ฑ๋กœ.As we are living in the era of big data, the biomedical domain is not an exception. With the advent of technologies such as next-generation sequencing, developing methods to capitalize on the explosion of biomedical data is one of the most major challenges in bioinformatics. Representation learning, in particular deep learning, has made significant advancements in diverse fields where the artificial intelligence community has struggled for many years. However, although representation learning has also shown great promises in bioinformatics, it is not a silver bullet. Off-the-shelf applications of representation learning cannot always provide successful results for biological sequence data. There remain full of challenges and opportunities to be explored. This dissertation presents a set of representation learning methods to address three issues in biological sequence data analysis. First, we propose a two-stage training strategy to address throughput and information trade-offs within wet-lab CRISPR-Cpf1 activity experiments. Second, we propose an encoding scheme to model interaction between two sequences for functional microRNA target prediction. Third, we propose a self-supervised pre-training method to bridge the exponentially growing gap between the numbers of unlabeled and labeled protein sequences. In summary, this dissertation proposes a set of representation learning methods that can derive invaluable information from the biological sequence data.์šฐ๋ฆฌ๋Š” ๋น…๋ฐ์ดํ„ฐ์˜ ์‹œ๋Œ€๋ฅผ ๋งž์ดํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์˜์ƒ๋ช… ๋ถ„์•ผ ๋˜ํ•œ ์˜ˆ์™ธ๊ฐ€ ์•„๋‹ˆ๋‹ค. ์ฐจ์„ธ๋Œ€ ์—ผ๊ธฐ์„œ์—ด ๋ถ„์„๊ณผ ๊ฐ™์€ ๊ธฐ์ˆ ๋“ค์ด ๋„๋ž˜ํ•จ์— ๋”ฐ๋ผ, ํญ๋ฐœ์ ์ธ ์˜์ƒ๋ช… ๋ฐ์ดํ„ฐ์˜ ์ฆ๊ฐ€๋ฅผ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์˜ ๊ฐœ๋ฐœ์€ ์ƒ๋ฌผ์ •๋ณดํ•™ ๋ถ„์•ผ์˜ ์ฃผ์š” ๊ณผ์ œ ์ค‘์˜ ํ•˜๋‚˜์ด๋‹ค. ์‹ฌ์ธต ํ•™์Šต์„ ํฌํ•จํ•œ ํ‘œํ˜„ ํ•™์Šต ๊ธฐ๋ฒ•๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ํ•™๊ณ„๊ฐ€ ์˜ค๋žซ๋™์•ˆ ์–ด๋ ค์›€์„ ๊ฒช์–ด์˜จ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ƒ๋‹นํ•œ ๋ฐœ์ „์„ ์ด๋ฃจ์—ˆ๋‹ค. ํ‘œํ˜„ ํ•™์Šต์€ ์ƒ๋ฌผ์ •๋ณดํ•™ ๋ถ„์•ผ์—์„œ๋„ ๋งŽ์€ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋‹จ์ˆœํ•œ ์ ์šฉ์œผ๋กœ๋Š” ์ƒ๋ฌผํ•™์  ์„œ์—ด ๋ฐ์ดํ„ฐ ๋ถ„์„์˜ ์„ฑ๊ณต์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ํ•ญ์ƒ ์–ป์„ ์ˆ˜๋Š” ์•Š์œผ๋ฉฐ, ์—ฌ์ „ํžˆ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•œ ๋งŽ์€ ๋ฌธ์ œ๋“ค์ด ๋‚จ์•„์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ์ƒ๋ฌผํ•™์  ์„œ์—ด ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ๊ด€๋ จ๋œ ์„ธ ๊ฐ€์ง€ ์‚ฌ์•ˆ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ํ‘œํ˜„ ํ•™์Šต์— ๊ธฐ๋ฐ˜ํ•œ ์ผ๋ จ์˜ ๋ฐฉ๋ฒ•๋ก ๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ์œ ์ „์ž๊ฐ€์œ„ ์‹คํ—˜ ๋ฐ์ดํ„ฐ์— ๋‚ด์žฌ๋œ ์ •๋ณด์™€ ์ˆ˜์œจ์˜ ๊ท ํ˜•์— ๋Œ€์ฒ˜ํ•  ์ˆ˜ ์žˆ๋Š” 2๋‹จ๊ณ„ ํ•™์Šต ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๋‘ ์—ผ๊ธฐ ์„œ์—ด ๊ฐ„์˜ ์ƒํ˜ธ ์ž‘์šฉ์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•œ ๋ถ€ํ˜ธํ™” ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ์„ธ ๋ฒˆ์งธ๋กœ, ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ํŠน์ง•๋˜์ง€ ์•Š์€ ๋‹จ๋ฐฑ์งˆ ์„œ์—ด์„ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์ž๊ธฐ ์ง€๋„ ์‚ฌ์ „ ํ•™์Šต ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์š”์•ฝํ•˜์ž๋ฉด, ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ์ƒ๋ฌผํ•™์  ์„œ์—ด ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์ค‘์š”ํ•œ ์ •๋ณด๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ๋Š” ํ‘œํ˜„ ํ•™์Šต์— ๊ธฐ๋ฐ˜ํ•œ ์ผ๋ จ์˜ ๋ฐฉ๋ฒ•๋ก ๋“ค์„ ์ œ์•ˆํ•œ๋‹ค.1 Introduction 1 1.1 Motivation 1 1.2 Contents of Dissertation 4 2 Background 8 2.1 Representation Learning 8 2.2 Deep Neural Networks 12 2.2.1 Multi-layer Perceptrons 12 2.2.2 Convolutional Neural Networks 14 2.2.3 Recurrent Neural Networks 16 2.2.4 Transformers 19 2.3 Training of Deep Neural Networks 23 2.4 Representation Learning in Bioinformatics 26 2.5 Biological Sequence Data Analyses 29 2.6 Evaluation Metrics 32 3 CRISPR-Cpf1 Activity Prediction 36 3.1 Methods 39 3.1.1 Model Architecture 39 3.1.2 Training of Seq-deepCpf1 and DeepCpf1 41 3.2 Experiment Results 44 3.2.1 Datasets 44 3.2.2 Baselines 47 3.2.3 Evaluation of Seq-deepCpf1 49 3.2.4 Evaluation of DeepCpf1 51 3.3 Summary 55 4 Functional microRNA Target Prediction 56 4.1 Methods 62 4.1.1 Candidate Target Site Selection 63 4.1.2 Input Encoding 64 4.1.3 Residual Network 67 4.1.4 Post-processing 68 4.2 Experiment Results 70 4.2.1 Datasets 70 4.2.2 Classification of Functional and Non-functional Targets 71 4.2.3 Distinguishing High-functional Targets 73 4.2.4 Ablation Studies 76 4.3 Summary 77 5 Self-supervised Learning of Protein Representations 78 5.1 Methods 83 5.1.1 Pre-training Procedure 83 5.1.2 Fine-tuning Procedure 86 5.1.3 Model Architecturen 87 5.2 Experiment Results 90 5.2.1 Experiment Setup 90 5.2.2 Pre-training Results 92 5.2.3 Fine-tuning Results 93 5.2.4 Comparison with Larger Protein Language Models 97 5.2.5 Ablation Studies 100 5.2.6 Qualitative Interpreatation Analyses 103 5.3 Summary 106 6 Discussion 107 6.1 Challenges and Opportunities 107 7 Conclusion 111 Bibliography 113 Abstract in Korean 130๋ฐ•

    Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control

    Get PDF
    Determining both the expression levels of mRNA and the regulation of its translation is important in understanding specialized cell functions. In this study, we describe both the expression profiles of cells within spatiotemporal domains of the Arabidopsis thaliana flower and the post-transcriptional regulation of these mRNAs, at nucleotide resolution. We express a tagged ribosomal protein under the promoters of three master regulators of flower development. By precipitating tagged polysomes, we isolated cell type specific mRNAs that are probably translating, and quantified those mRNAs through deep sequencing. Cell type comparisons identified known cell-specific transcripts and uncovered many new ones, from which we inferred cell type-specific hormone responses, promoter motifs and coexpressed cognate binding factor candidates, and splicing isoforms. By comparing translating mRNAs with steady-state overall transcripts, we found evidence for widespread post-transcriptional regulation at both the intron splicing and translational stages. Sequence analyses identified structural features associated with each step. Finally, we identified a new class of noncoding RNAs associated with polysomes. Findings from our profiling lead to new hypotheses in the understanding of flower development

    Evolutionary Approaches to the Study of Small Noncoding Regulatory RNA Pathways: A Dissertation

    Get PDF
    Short noncoding RNAs play roles in regulating nearly every biological process, in nearly every organism, yet the exact function and importance of these molecules remains a subject of some debate. In order to gain a better understanding of the contexts in which these regulators have evolved, I have undertaken a variety of approaches to study the evolutionary history of the components that make up these pathways, in the form of two main research efforts. In the first chapter, I have used a combination of population genetics and molecular evolution techniques to show that proteins involved in the piRNA pathway are rapidly evolving, and that different components of the pathway seem to be evolving rapidly on different timescales. These rapidly evolving piRNA pathway proteins can be loosely separated into two groups. The first group appears to evolve quickly at the species level, perhaps in response to transposons that invade across species lines, while the second group appears to evolve quickly at the level of individual populations, perhaps in response to transposons that are paternally present yet novel to the maternal genome. In the second chapter of my research, I have used molecular evolution techniques and carefully devised controls to show that the binding sites of well-conserved miRNAs are among the most slowly changing short motifs in the genome, consistent with a conserved function for these short RNAs in regulatory pathways that are ancient and extremely slow to change. I have additionally discovered a major flaw in an existing approach to motif turnover calculations, which may lead to systematic biases in the published literature toward the false inference of increased regulatory complexity over time. I have implemented a revised approach to motif turnover that addresses this flaw
    • โ€ฆ
    corecore