14,031 research outputs found

    An EMG study of the lip muscles during covert auditory verbal hallucinations in schizophrenia

    Get PDF
    Purpose: Auditory verbal hallucinations (AVHs) are speech perceptions in the absence of a external stimulation. An influential theoretical account of AVHs in schizophrenia claims that a deficit in inner speech monitoring would cause the verbal thoughts of the patient to be perceived as external voices. The account is based on a predictive control model, in which verbal self-monitoring is implemented. The aim of this study was to examine lip muscle activity during AVHs in schizophrenia patients, in order to check whether inner speech occurred. Methods: Lip muscle activity was recorded during covert AVHs (without articulation) and rest. Surface electromyography (EMG) was used on eleven schizophrenia patients. Results: Our results show an increase in EMG activity in the orbicularis oris inferior muscle, during covert AVHs relative to rest. This increase is not due to general muscular tension since there was no increase of muscular activity in the forearm muscle. Conclusion: This evidence that AVHs might be self-generated inner speech is discussed in the framework of a predictive control model. Further work is needed to better describe how the inner speech monitoring dysfunction occurs and how inner speech is controlled and monitored. This will help better understanding how AVHs occur

    Machine Learning Methods for functional Near Infrared Spectroscopy

    Get PDF
    Identification of user state is of interest in a wide range of disciplines that fall under the umbrella of human machine interaction. Functional Near Infra-Red Spectroscopy (fNIRS) device is a relatively new device that enables inference of brain activity through non-invasively pulsing infra-red light into the brain. The fNIRS device is particularly useful as it has a better spatial resolution than the Electroencephalograph (EEG) device that is most commonly used in Human Computer Interaction studies under ecologically valid settings. But this key advantage of fNIRS device is underutilized in current literature in the fNIRS domain. We propose machine learning methods that capture this spatial nature of the human brain activity using a novel preprocessing method that uses `Region of Interest\u27 based feature extraction. Experiments show that this method outperforms the F1 score achieved previously in classifying `low\u27 vs `high\u27 valence state of a user. We further our analysis by applying a Convolutional Neural Network (CNN) to the fNIRS data, thus preserving the spatial structure of the data and treating the data similar to a series of images to be classified. Going further, we use a combination of CNN and Long Short-Term Memory (LSTM) to capture the spatial and temporal behavior of the fNIRS data, thus treating it similar to a video classification problem. We show that this method improves upon the accuracy previously obtained by valence classification methods using EEG or fNIRS devices. Finally, we apply the above model to a problem in classifying combined task-load and performance in an across-subject, across-task scenario of a Human Machine Teaming environment in order to achieve optimal productivity of the system

    Reduced heart rate variability predicts fatigue severity in individuals with chronic fatigue syndrome/myalgic encephalomyelitis

    Get PDF
    Heart rate variability (HRV) is an objective, non-invasive tool to assessing autonomic dysfunction in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). People with CFS/ME tend to have lower HRV; however, in the literature there are only a few previous studies (most of them inconclusive) on their association with illness-related complaints. To address this issue, we assessed the value of different diurnal HRV parameters as potential biomarker in CFS/ME and also investigated the relationship between these HRV indices and self-reported symptoms in individuals with CFS/ME.Peer ReviewedPostprint (published version

    Review of various intraoperative neurophysiologic monitoring techniques

    Get PDF
    IONM is use to monitoring nervous tissues (including brain, spinal cord, cranial nerves and peripheral nerves) in real-time during surgeries, alert neurological injuries and corrective measures and prevent disability. There are various IONM monitoring techniques including evoke potentials (SSEP, BAEP, MEP), EMG (Free-running and triggered), NAP (Nerve action potential) and Electroencephalography (EEG) to monitor the functional integrity of neural structures. SSEP evaluates integrity of posterior column-medial lemniscus pathway. SSEP is clinical use in spinal cord surgeries, vascular surgeries (carotid endarterectomy, cerebral aneurysm surgery etc), and localization of sensor motor cortex. BAEP evaluates integrity of peripheral and central auditory pathway. BAEP is clinical use in CP angle tumors surgery (acoustic neuroma ,meningioma), microvascular decompression of CN-VII for hemifacial spasm, CN-V for trigeminal neuralgia, CN-IX for glossopharyngeal neuralgia, skull base surgery, Suboccipital decompression (e.g. fractures/dislocation C-1vertebra, chiari malformation). MEP evaluates integrity of motor pathway. MEP is sensitive to neuromuscular blocker anesthetic medications. Clinical utility of MEP including any surgery risking motor pathway injury include tumor near the motor cortex or corticospinal tract, intracranial aneurysm clipping, posterior fossa surgery, tethered cord or cauda equina surgeries, spinal deformity or fracture surgery, vertebral tumor resections, and anterior cervical discectomy, descending aortic procedures, spinal arteriovenous malformation interventions and carotid endarterectomy. EMG (free running and triggered) evaluates integrity of innervating nerves and electrical activity of muscles. Clinical utility of facial and other cranial nerve monitoring in posterior fossa surgery (eg, acoustic neuroma), selective dorsal rhizotomy, tethered cord release , Pedicle screw placement and Anal or urinary sphincter function monitoring

    Using Noninvasive Brain Measurement to Explore the Psychological Effects of Computer Malfunctions on Users during Human-Computer Interactions

    Full text link
    In today’s technologically driven world, there is a need to better understand the ways that common computer malfunctions affect computer users. These malfunctions may have measurable influences on computer user’s cognitive, emotional, and behavioral responses. An experiment was conducted where participants conducted a series of web search tasks while wearing functional nearinfrared spectroscopy (fNIRS) and galvanic skin response sensors. Two computer malfunctions were introduced during the sessions which had the potential to influence correlates of user trust and suspicion. Surveys were given after each session to measure user’s perceived emotional state, cognitive load, and perceived trust. Results suggest that fNIRS can be used to measure the different cognitive and emotional responses associated with computer malfunctions. These cognitive and emotional changes were correlated with users’ self-report levels of suspicion and trust, and they in turn suggest future work that further explores the capability of fNIRS for the measurement of user experience during human-computer interactions

    Bestial boredom: a biological perspective on animal boredom and suggestions for its scientific investigation

    Get PDF
    Boredom is likely to have adaptive value in motivating exploration and learning, and many animals may possess the basic neurological mechanisms to support it. Chronic inescapable boredom can be extremely aversive, and understimulation can harm neural, cognitive and behavioural flexibility. Wild and domesticated animals are at particular risk in captivity, which is often spatially and temporally monotonous. Yet biological research into boredom has barely begun, despite having important implications for animal welfare, the evolution of motivation and cognition, and for human dysfunction at individual and societal levels. Here I aim to facilitate hypotheses about how monotony affects behaviour and physiology, so that boredom can be objectively studied by ethologists and other scientists. I cover valence (pleasantness) and arousal (wakefulness) qualities of boredom, because both can be measured, and I suggest boredom includes suboptimal arousal and aversion to monotony. Because the suboptimal arousal during boredom is aversive, individuals will resist low arousal. Thus, behavioural indicators of boredom will, seemingly paradoxically, include signs of increasing drowsiness, alongside bouts of restlessness, avoidance and sensation-seeking behaviour. Valence and arousal are not, however, sufficient to fully describe boredom. For example, human boredom is further characterized by a perception that time ‘drags’, and this effect of monotony on time perception can too be behaviourally assayed in animals. Sleep disruption and some abnormal behaviour may also be caused by boredom. Ethological research into this emotional phenomenon will deepen understanding of its causes, development, function and evolution, and will enable evidence-based interventions to mitigate human and animal boredom

    MMP-9 as Prognostic Marker for Brain Tumours: A Comparative Study on Serum-Derived Small Extracellular Vesicles

    Get PDF
    Matrix metalloproteinase-9 (MMP-9) degrades the extracellular matrix, contributes to tumour cell invasion and metastasis, and its elevated level in brain tumour tissues indicates poor prognosis. High-risk tissue biopsy can be replaced by liquid biopsy; however, the blood–brain barrier (BBB) prevents tumour-associated components from entering the peripheral blood, making the development of blood-based biomarkers challenging. Therefore, we examined the MMP-9 content of small extracellular vesicles (sEVs)—which can cross the BBB and are stable in body fluids—to characterise tumours with different invasion capacity. From four patient groups (glioblastoma multiforme, brain metastases of lung cancer, meningioma, and lumbar disc herniation as controls), 222 serum-derived sEV samples were evaluated. After isolating and characterising sEVs, their MMP-9 content was measured by ELISA and assessed statistically (correlation, paired t-test, Welch’s test, ANOVA, ROC). We found that the MMP-9 content of sEVs is independent of gender and age, but is affected by surgical intervention, treatment, and recurrence. We found a relation between low MMP-9 level in sEVs (<28 ppm) and improved survival (8-month advantage) of glioblastoma patients, and MMP-9 levels showed a positive correlation with aggressiveness. These findings suggest that vesicular MMP-9 level might be a useful prognostic marker for brain tumours

    Functional Imaging of Autonomic Regulation: Methods and Key Findings.

    Get PDF
    Central nervous system processing of autonomic function involves a network of regions throughout the brain which can be visualized and measured with neuroimaging techniques, notably functional magnetic resonance imaging (fMRI). The development of fMRI procedures has both confirmed and extended earlier findings from animal models, and human stroke and lesion studies. Assessments with fMRI can elucidate interactions between different central sites in regulating normal autonomic patterning, and demonstrate how disturbed systems can interact to produce aberrant regulation during autonomic challenges. Understanding autonomic dysfunction in various illnesses reveals mechanisms that potentially lead to interventions in the impairments. The objectives here are to: (1) describe the fMRI neuroimaging methodology for assessment of autonomic neural control, (2) outline the widespread, lateralized distribution of function in autonomic sites in the normal brain which includes structures from the neocortex through the medulla and cerebellum, (3) illustrate the importance of the time course of neural changes when coordinating responses, and how those patterns are impacted in conditions of sleep-disordered breathing, and (4) highlight opportunities for future research studies with emerging methodologies. Methodological considerations specific to autonomic testing include timing of challenges relative to the underlying fMRI signal, spatial resolution sufficient to identify autonomic brainstem nuclei, blood pressure, and blood oxygenation influences on the fMRI signal, and the sustained timing, often measured in minutes of challenge periods and recovery. Key findings include the lateralized nature of autonomic organization, which is reminiscent of asymmetric motor, sensory, and language pathways. Testing brain function during autonomic challenges demonstrate closely-integrated timing of responses in connected brain areas during autonomic challenges, and the involvement with brain regions mediating postural and motoric actions, including respiration, and cardiac output. The study of pathological processes associated with autonomic disruption shows susceptibilities of different brain structures to altered timing of neural function, notably in sleep disordered breathing, such as obstructive sleep apnea and congenital central hypoventilation syndrome. The cerebellum, in particular, serves coordination roles for vestibular stimuli and blood pressure changes, and shows both injury and substantially altered timing of responses to pressor challenges in sleep-disordered breathing conditions. The insights into central autonomic processing provided by neuroimaging have assisted understanding of such regulation, and may lead to new treatment options for conditions with disrupted autonomic function
    corecore