4,850 research outputs found

    A Relational Hyperlink Analysis of an Online Social Movement

    Get PDF
    In this paper we propose relational hyperlink analysis (RHA) as a distinct approach for empirical social science research into hyperlink networks on the World Wide Web. We demonstrate this approach, which employs the ideas and techniques of social network analysis (in particular, exponential random graph modeling), in a study of the hyperlinking behaviors of Australian asylum advocacy groups. We show that compared with the commonly-used hyperlink counts regression approach, relational hyperlink analysis can lead to fundamentally different conclusions about the social processes underpinning hyperlinking behavior. In particular, in trying to understand why social ties are formed, counts regressions may over-estimate the role of actor attributes in the formation of hyperlinks when endogenous, purely structural network effects are not taken into account. Our analysis involves an innovative joint use of two software programs: VOSON, for the automated retrieval and processing of considerable quantities of hyperlink data, and LPNet, for the statistical modeling of social network data. Together, VOSON and LPNet enable new and unique research into social networks in the online world, and our paper highlights the importance of complementary research tools for social science research into the web

    Visual analytics for supply network management: system design and evaluation

    Full text link
    We propose a visual analytic system to augment and enhance decision-making processes of supply chain managers. Several design requirements drive the development of our integrated architecture and lead to three primary capabilities of our system prototype. First, a visual analytic system must integrate various relevant views and perspectives that highlight different structural aspects of a supply network. Second, the system must deliver required information on-demand and update the visual representation via user-initiated interactions. Third, the system must provide both descriptive and predictive analytic functions for managers to gain contingency intelligence. Based on these capabilities we implement an interactive web-based visual analytic system. Our system enables managers to interactively apply visual encodings based on different node and edge attributes to facilitate mental map matching between abstract attributes and visual elements. Grounded in cognitive fit theory, we demonstrate that an interactive visual system that dynamically adjusts visual representations to the decision environment can significantly enhance decision-making processes in a supply network setting. We conduct multi-stage evaluation sessions with prototypical users that collectively confirm the value of our system. Our results indicate a positive reaction to our system. We conclude with implications and future research opportunities.The authors would like to thank the participants of the 2015 Businessvis Workshop at IEEE VIS, Prof. Benoit Montreuil, and Dr. Driss Hakimi for their valuable feedback on an earlier version of the software; Prof. Manpreet Hora for assisting with and Georgia Tech graduate students for participating in the evaluation sessions; and the two anonymous reviewers for their detailed comments and suggestions. The study was in part supported by the Tennenbaum Institute at Georgia Tech Award # K9305. (K9305 - Tennenbaum Institute at Georgia Tech Award)Accepted manuscrip

    Laminar fMRI: applications for cognitive neuroscience

    Get PDF
    The cortex is a massively recurrent network, characterized by feedforward and feedback connections between brain areas as well as lateral connections within an area. Feedforward, horizontal and feedback responses largely activate separate layers of a cortical unit, meaning they can be dissociated by lamina-resolved neurophysiological techniques. Such techniques are invasive and are therefore rarely used in humans. However, recent developments in high spatial resolution fMRI allow for non-invasive, in vivo measurements of brain responses specific to separate cortical layers. This provides an important opportunity to dissociate between feedforward and feedback brain responses, and investigate communication between brain areas at a more fine- grained level than previously possible in the human species. In this review, we highlight recent studies that successfully used laminar fMRI to isolate layer-specific feedback responses in human sensory cortex. In addition, we review several areas of cognitive neuroscience that stand to benefit from this new technological development, highlighting contemporary hypotheses that yield testable predictions for laminar fMRI. We hope to encourage researchers with the opportunity to embrace this development in fMRI research, as we expect that many future advancements in our current understanding of human brain function will be gained from measuring lamina-specific brain responses

    Third Conference on Artificial Intelligence for Space Applications, part 2

    Get PDF
    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed

    Link Prediction in Complex Networks: A Survey

    Full text link
    Link prediction in complex networks has attracted increasing attention from both physical and computer science communities. The algorithms can be used to extract missing information, identify spurious interactions, evaluate network evolving mechanisms, and so on. This article summaries recent progress about link prediction algorithms, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods. We also introduce three typical applications: reconstruction of networks, evaluation of network evolving mechanism and classification of partially labelled networks. Finally, we introduce some applications and outline future challenges of link prediction algorithms.Comment: 44 pages, 5 figure

    Analyzing and Modeling Real-World Phenomena with Complex Networks: A Survey of Applications

    Get PDF
    The success of new scientific areas can be assessed by their potential for contributing to new theoretical approaches and in applications to real-world problems. Complex networks have fared extremely well in both of these aspects, with their sound theoretical basis developed over the years and with a variety of applications. In this survey, we analyze the applications of complex networks to real-world problems and data, with emphasis in representation, analysis and modeling, after an introduction to the main concepts and models. A diversity of phenomena are surveyed, which may be classified into no less than 22 areas, providing a clear indication of the impact of the field of complex networks.Comment: 103 pages, 3 figures and 7 tables. A working manuscript, suggestions are welcome

    Structural inequalities emerging from a large wire transfers network

    Get PDF
    We aim to explore the connections between structural network inequalities and bank’s customer spending behaviours, within an entire national ecosystem made of natural persons (i.e., an individual human being) and legal entities (i.e., private or public organisations), different business sectors, and supply chains that span distinct geographical regions. We focus on Italy, that is among the wealthiest nations in the world, and also an example of a complex economic system. In particular, we had access to a large subset of anonymised and GDPR-compliant wire transfer data recorded from Jan 2016 to Dec 2017 by Intesa Sanpaolo, a leading banking group in the Eurozone, and the most important one in Italy.Intesa Sanpaolo wire transfers network exhibits a strong heavy-tailed behaviour and a giant component that grows continuously around the same core of the 1% highest degree nodes, and it also shows a general disassortative pattern, even if some ranges of degrees’ values stand out from the trend. Structural heterogeneity is explored further by means of a bow-tie analysis, that shows clearly that the majority of relevant, in terms of transferred amount, transactions is settled between a smaller set of nodes that are associated to legal entities and that mostly belong to the strongly connected component. This observation brings to a more comprehensive inspection of differences between Italian regions and business sectors, that could support the detection and the understanding of the interplay between supply chains.Our results suggest that there is a general flow of money that seems to stream down from higher degree legal entities to lower degree natural persons, crossing Italian regions and connecting different business sectors, and that is finally redistributed through expenses sharing within families and smaller communities. We also describe a reference dataset and an empirical contribution to the study on financial networks, focusing on finer-grained information concerned about spending behaviour through wire transfers

    A survey of statistical network models

    Full text link
    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.Comment: 96 pages, 14 figures, 333 reference
    corecore