230 research outputs found

    Acoustic-Phonetic Approaches for Improving Segment-Based Speech Recognition for Large Vocabulary Continuous Speech

    Get PDF
    Segment-based speech recognition has shown to be a competitive alternative to the state-of-the-art HMM-based techniques. Its accuracies rely heavily on the quality of the segment graph from which the recognizer searches for the most likely recognition hypotheses. In order to increase the inclusion rate of actual segments in the graph, it is important to recover possible missing segments generated by segment-based segmentation algorithm. An aspect of this research focuses on determining the missing segments due to missed detection of segment boundaries. The acoustic discontinuities, together with manner-distinctive features are utilized to recover the missing segments. Another aspect of improvement to our segment-based framework tackles the restriction of having limited amount of training speech data which prevents the usage of more complex covariance matrices for the acoustic models. Feature dimensional reduction in the form of the Principal Component Analysis (PCA) is applied to enable the training of full covariance matrices and it results in improved segment-based phoneme recognition. Furthermore, to benefit from the fact that segment-based approach allows the integration of phonetic knowledge, we incorporate the probability of each segment being one type of sound unit of a certain specific common manner of articulation into the scoring of the segment graphs. Our experiment shows that, with the proposed improvements, our segment-based framework approximately increases the phoneme recognition accuracy by approximately 25% of the one obtained from the baseline segment-based speech recognition

    Frame-level features conveying phonetic information for language and speaker recognition

    Get PDF
    150 p.This Thesis, developed in the Software Technologies Working Group of the Departmentof Electricity and Electronics of the University of the Basque Country, focuseson the research eld of spoken language and speaker recognition technologies.More specically, the research carried out studies the design of a set of featuresconveying spectral acoustic and phonotactic information, searches for the optimalfeature extraction parameters, and analyses the integration and usage of the featuresin language recognition systems, and the complementarity of these approacheswith regard to state-of-the-art systems. The study reveals that systems trained onthe proposed set of features, denoted as Phone Log-Likelihood Ratios (PLLRs), arehighly competitive, outperforming in several benchmarks other state-of-the-art systems.Moreover, PLLR-based systems also provide complementary information withregard to other phonotactic and acoustic approaches, which makes them suitable infusions to improve the overall performance of spoken language recognition systems.The usage of this features is also studied in speaker recognition tasks. In this context,the results attained by the approaches based on PLLR features are not as remarkableas the ones of systems based on standard acoustic features, but they still providecomplementary information that can be used to enhance the overall performance ofthe speaker recognition systems

    Speech recognition based on phonetic features and acoustic landmarks

    Get PDF
    A probabilistic and statistical framework is presented for automatic speech recognition based on a phonetic feature representation of speech sounds. In this acoustic-phonetic approach, the speech recognition problem is hypothesized as a maximization of the joint posterior probability of a set of phonetic features and the corresponding acoustic landmarks. Binary classifiers of the manner phonetic features - syllabic, sonorant and continuant - are applied for the probabilistic detection of speech landmarks. The landmarks include stop bursts, vowel onsets, syllabic peaks, syllabic dips, fricative onsets and offsets, and sonorant consonant onsets and offsets. The classifiers use automatically extracted knowledge based acoustic parameters (APs) that are acoustic correlates of those phonetic features. For isolated word recognition with known and limited vocabulary, the landmark sequences are constrained using a manner class pronunciation graph. Probabilistic decisions on place and voicing phonetic features are then made using a separate set of APs extracted using the landmarks. The framework exploits two properties of the knowledge-based acoustic cues of phonetic features: (1) sufficiency of the acoustic cues of a phonetic feature for a decision on that feature and (2) invariance of the acoustic cues with respect to context. The probabilistic framework makes the acoustic-phonetic approach to speech recognition suitable for practical recognition tasks as well as compatible with probabilistic pronunciation and language models. Support vector machines (SVMs) are applied for the binary classification tasks because of their two favorable properties - good generalization and the ability to learn from a relatively small amount of high dimensional data. Performance comparable to Hidden Markov Model (HMM) based systems is obtained on landmark detection as well as isolated word recognition. Applications to rescoring of lattices from a large vocabulary continuous speech recognizer are also presented

    Physiologically-Motivated Feature Extraction Methods for Speaker Recognition

    Get PDF
    Speaker recognition has received a great deal of attention from the speech community, and significant gains in robustness and accuracy have been obtained over the past decade. However, the features used for identification are still primarily representations of overall spectral characteristics, and thus the models are primarily phonetic in nature, differentiating speakers based on overall pronunciation patterns. This creates difficulties in terms of the amount of enrollment data and complexity of the models required to cover the phonetic space, especially in tasks such as identification where enrollment and testing data may not have similar phonetic coverage. This dissertation introduces new features based on vocal source characteristics intended to capture physiological information related to the laryngeal excitation energy of a speaker. These features, including RPCC, GLFCC and TPCC, represent the unique characteristics of speech production not represented in current state-of-the-art speaker identification systems. The proposed features are evaluated through three experimental paradigms including cross-lingual speaker identification, cross song-type avian speaker identification and mono-lingual speaker identification. The experimental results show that the proposed features provide information about speaker characteristics that is significantly different in nature from the phonetically-focused information present in traditional spectral features. The incorporation of the proposed glottal source features offers significant overall improvement to the robustness and accuracy of speaker identification tasks

    Acoustic Approaches to Gender and Accent Identification

    Get PDF
    There has been considerable research on the problems of speaker and language recognition from samples of speech. A less researched problem is that of accent recognition. Although this is a similar problem to language identification, di�erent accents of a language exhibit more fine-grained di�erences between classes than languages. This presents a tougher problem for traditional classification techniques. In this thesis, we propose and evaluate a number of techniques for gender and accent classification. These techniques are novel modifications and extensions to state of the art algorithms, and they result in enhanced performance on gender and accent recognition. The first part of the thesis focuses on the problem of gender identification, and presents a technique that gives improved performance in situations where training and test conditions are mismatched. The bulk of this thesis is concerned with the application of the i-Vector technique to accent identification, which is the most successful approach to acoustic classification to have emerged in recent years. We show that it is possible to achieve high accuracy accent identification without reliance on transcriptions and without utilising phoneme recognition algorithms. The thesis describes various stages in the development of i-Vector based accent classification that improve the standard approaches usually applied for speaker or language identification, which are insu�cient. We demonstrate that very good accent identification performance is possible with acoustic methods by considering di�erent i-Vector projections, frontend parameters, i-Vector configuration parameters, and an optimised fusion of the resulting i-Vector classifiers we can obtain from the same data. We claim to have achieved the best accent identification performance on the test corpus for acoustic methods, with up to 90% identification rate. This performance is even better than previously reported acoustic-phonotactic based systems on the same corpus, and is very close to performance obtained via transcription based accent identification. Finally, we demonstrate that the utilization of our techniques for speech recognition purposes leads to considerably lower word error rates. Keywords: Accent Identification, Gender Identification, Speaker Identification, Gaussian Mixture Model, Support Vector Machine, i-Vector, Factor Analysis, Feature Extraction, British English, Prosody, Speech Recognition

    Open-set Speaker Identification

    Get PDF
    This study is motivated by the growing need for effective extraction of intelligence and evidence from audio recordings in the fight against crime, a need made ever more apparent with the recent expansion of criminal and terrorist organisations. The main focus is to enhance open-set speaker identification process within the speaker identification systems, which are affected by noisy audio data obtained under uncontrolled environments such as in the street, in restaurants or other places of businesses. Consequently, two investigations are initially carried out including the effects of environmental noise on the accuracy of open-set speaker recognition, which thoroughly cover relevant conditions in the considered application areas, such as variable training data length, background noise and real world noise, and the effects of short and varied duration reference data in open-set speaker recognition. The investigations led to a novel method termed “vowel boosting” to enhance the reliability in speaker identification when operating with varied duration speech data under uncontrolled conditions. Vowels naturally contain more speaker specific information. Therefore, by emphasising this natural phenomenon in speech data, it enables better identification performance. The traditional state-of-the-art GMM-UBMs and i-vectors are used to evaluate “vowel boosting”. The proposed approach boosts the impact of the vowels on the speaker scores, which improves the recognition accuracy for the specific case of open-set identification with short and varied duration of speech material
    corecore