657 research outputs found

    From “Oh, OK” to “Ah, yes” to “Aha!”: Hyper-systemizing and the rewards of insight\ud

    Get PDF
    Hyper-systemizers are individuals displaying an unusually strong bias toward systemizing, i.e. toward explaining events and solving problems by appeal to mechanisms that do not involve intentions or agency. Hyper-systemizing in combination with deficit mentalizing ability typically presents clinically as an autistic spectrum disorder; however, the development of hyper-systemizing in combination with normal-range mentalizing ability is not well characterized. Based on a review and synthesis of clinical, observational, experimental, and neurofunctional studies, it is hypothesized that repeated episodes of insightful problem solving by systemizing result in attentional and motivational sensitization toward further systemizing via progressive and chronic deactivation of the default network. This hypothesis is distinguished from alternatives, and its correlational and causal implications are discussed. Predictions of the default-deactivation model accessible to survey-based instruments, standard cognitive measures and neurofunctional methods are outlined, and evidence pertaining to them considered

    Functional specialization within rostral prefrontal cortex (Area 10): a meta-analysis

    Get PDF
    One of the least well understood regions of the human brain is rostral prefrontal cortex, approximating Brodmann's area 10. Here, we investigate the possibility that there are functional subdivisions within this region by conducting a meta-analysis of 104 functional neuroimaging studies (using positron emission tomography/functional magnetic resonance imaging). Studies involving working memory and episodic memory retrieval were disproportionately associated with lateral activations, whereas studies involving mentalizing (i.e., attending to one's own emotions and mental states or those of other agents) were disproportionately associated with medial activations. Functional variation was also observed along a rostral-caudal axis, with studies involving mentalizing yielding relatively caudal activations and studies involving multiple-task coordination yielding relatively rostral activations. A classification algorithm was trained to predict the task, given the coordinates of each activation peak. Performance was well above chance levels (74% for the three most common tasks; 45% across all eight tasks investigated) and generalized to data not included in the training set. These results point to considerable functional segregation within rostral prefrontal cortex

    Decoding social intentions in human prehensile actions : insights from a combined kinematics-fMRI study

    Get PDF
    Funding: This work was supported by a grant from the MIUR (N. 287713), the FP7: REWIRE project, by Progetto Strategico, Universitaà di Padova (N. 2010XPMFW4) to UC and by SIR grant (Scientific Independence of Young Researchers—N. RBSI141QKX) to LS.Consistent evidence suggests that the way we reach and grasp an object is modulated not only by object properties (e.g., size, shape, texture, fragility and weight), but also by the types of intention driving the action, among which the intention to interact with another agent (i.e., social intention). Action observation studies ascribe the neural substrate of this ‘intentional’ component to the putative mirror neuron (pMNS) and the mentalizing (MS) systems. How social intentions are translated into executed actions, however, has yet to be addressed. We conducted a kinematic and a functional Magnetic Resonance Imaging (fMRI) study considering a reach-to-grasp movement performed towards the same object positioned at the same location but with different intentions: passing it to another person (social condition) or putting it on a concave base (individual condition). Kinematics showed that individual and social intentions are characterized by different profiles, with a slower movement at the level of both the reaching (i.e., arm movement) and the grasping (i.e., hand aperture) components. fMRI results showed that: (i) distinct voxel pattern activity for the social and the individual condition are present within the pMNS and the MS during action execution; (ii) decoding accuracies of regions belonging to the pMNS and the MS are correlated, suggesting that these two systems could interact for the generation of appropriate motor commands. Results are discussed in terms of motor simulation and inferential processes as part of a hierarchical generative model for action intention understanding and generation of appropriate motor commands.Publisher PDFPeer reviewe

    Playing Charades in the fMRI: Are Mirror and/or Mentalizing Areas Involved in Gestural Communication?

    Get PDF
    Communication is an important aspect of human life, allowing us to powerfully coordinate our behaviour with that of others. Boiled down to its mere essentials, communication entails transferring a mental content from one brain to another. Spoken language obviously plays an important role in communication between human individuals. Manual gestures however often aid the semantic interpretation of the spoken message, and gestures may have played a central role in the earlier evolution of communication. Here we used the social game of charades to investigate the neural basis of gestural communication by having participants produce and interpret meaningful gestures while their brain activity was measured using functional magnetic resonance imaging. While participants decoded observed gestures, the putative mirror neuron system (pMNS: premotor, parietal and posterior mid-temporal cortex), associated with motor simulation, and the temporo-parietal junction (TPJ), associated with mentalizing and agency attribution, were significantly recruited. Of these areas only the pMNS was recruited during the production of gestures. This suggests that gestural communication relies on a combination of simulation and, during decoding, mentalizing/agency attribution brain areas. Comparing the decoding of gestures with a condition in which participants viewed the same gestures with an instruction not to interpret the gestures showed that although parts of the pMNS responded more strongly during active decoding, most of the pMNS and the TPJ did not show such significant task effects. This suggests that the mere observation of gestures recruits most of the system involved in voluntary interpretation

    Neural mechanisms of social cognition – the mirror neuron system and beyond

    Get PDF
    In my PhD thesis, I present three functional magnetic resonance imaging studies aimed at investigating neurobiological mechanisms underlying social cognition. My thesis focuses on fast and automatic processes that are proposed to build the basis of social understanding, and might be activated in parallel to more effortful deliberate mechanisms. The proposed neural substrate of fast and automatic processes are mirror neurons, which according to the theory of embodied simulation allow humans to understand other individuals’ actions, and even emotions and intentions. Since non-invasive techniques cannot be applied to measure mirror neurons, but only neural populations assumed to constitute the mirror neuron system, experimental paradigms and analysis routines that allow approximation of mirror neuron functions need to be developed. In study 1, I demonstrated that different social cognitive skills, including imitation, affective empathy and theory of mind share a common neural basis, located in regions associated with the mirror neuron system. In addition to standard analyses, a shared voxel analysis was applied that revealed common activation for social-cognitive processes not only across, but also within participants. Study 2 was set up to investigate whether the mirror neuron system can distinguish the valence of facial configurations. The use of a functional magnetic resonance imaging adaptation paradigm allowed to determine neural populations sensitive to emotional valence. While the fusiform gyrus was sensitive to changes from fearful to smiling faces and also from smiling to fearful faces, Brodmann area 44 reaching into insula, and superior temporal sulcus, i.e. regions more commonly associated with the mirror neuron system and with the so called mentalizing network, showed particularly increased activation for switches from smiling to fearful faces. Study 3 was dedicated to the investigation of decision making in the context of ambiguous facial configurations. While probabilistic decision making on these facial configurations lead to activation in the executive control network, final decisions for an emotion resulted in nucleus accumbens activation. In addition, perceiving fear in a face lead to higher nucleus accumbens activation during final decisions than perceiving happiness. This finding can be linked to salience processing in the nucleus accumbens. In conclusion, all three studies show an involvement of fast and automatic processing regions for different social-cognitive processes. Study 3 additionally examined the interaction with slower and more deliberate processes, as involved in probabilistic decision making on ambiguous faces. The mirror neuron system seems to be critically involved in different social-cognitive tasks and also sensitive to emotional valence. In cases when automatic processing is not possible, as when presented with ambiguous facial configurations, brain regions commonly associated with probabilistic decision making assist, and the nucleus accumbens, possibly by directing salience, is involved in the final decision. These results deepen the understanding of the mechanisms of social cognition and encourage the use of sophisticated methods in experimental paradigms and analysis

    Potential Neural Mediators of Mom Power Parenting Intervention Effects on Maternal Intersubjectivity and Stress Resilience

    Get PDF
    Stress resilience in parenting depends on the parent\u27s capacity to understand subjective experiences in self and child, namely intersubjectivity, which is intimately related to mimicking other\u27s affective expressions (i. e., mirroring). Stress can worsen parenting by potentiating problems that can impair intersubjectivity, e.g., problems of “over-mentalizing” (misattribution of the child\u27s behaviors) and “under-coupling” (inadequate child-oriented mirroring). Previously we have developed Mom Power (MP) parenting intervention to promote maternal intersubjectivity and reduce parenting stress. This study aimed to elucidate neural mechanisms underlying the effects of MP with a novel Child Face Mirroring Task (CFMT) in functional magnetic-resonance-imaging settings. In CFMT, the participants responded to own and other\u27s child\u27s facial pictures in three task conditions: (1) empathic mirroring (Join), (2) non-mirroring observing (Observe), and (3) voluntary responding (React). In each condition, each child\u27s neutral, ambiguous, distressed, and joyful expressions were repeatedly displayed. We examined the CFMT-related neural responses in a sample of healthy mothers (n = 45) in Study 1, and MP effects on CFMT with a pre-intervention (T1) and post-intervention (T2) design in two groups, MP (n = 19) and Control (n = 17), in Study 2. We found that, from T1 to T2, MP (vs. Control) decreased parenting stress, decreased dorsomedial prefrontal cortex (dmPFC) during own-child-specific voluntary responding (React to Own vs. Other\u27s Child), and increased activity in the frontoparietal cortices, midbrain, nucleus accumbens, and amygdala during own-child-specific empathic mirroring (Join vs. Observe of Own vs. Other\u27s Child). We identified that MP effects on parenting stress were potentially mediated by T1-to-T2 changes in: (1) the left superior-temporal-gyrus differential responses in the contrast of Join vs. Observe of own (vs. other\u27s) child, (2) the dmPFC-PAG (periaqueductal gray) differential functional connectivity in the same contrast, and (3) the left amygdala differential responses in the contrast of Join vs. Observe of own (vs. other\u27s) child\u27s joyful vs. distressed expressions. We discussed these results in support of the notion that MP reduces parenting stress via changing neural activities related to the problems of “over-mentalizing” and “under-coupling.” Additionally, we discussed theoretical relationships between parenting stress and intersubjectivity in a novel dyadic active inference framework in a two-agent system to guide future research

    Brains in interaction

    Get PDF
    Wanneer twee mensen met elkaar communiceren, dan ontstaat er een soort tijdelijke verbinding tussen hen. Deze verbinding bestaat uit een keten van gebeurtenissen en begint bijvoorbeeld bij de hersenactiviteit in de motorische cortex van de ene persoon. Deze activiteit leidt tot gedrag, bijvoorbeeld het maken van een gebaar, dat wordt gezien door de andere persoon. Deze bekijkt en interpreteert dit gebaar wat leidt tot activiteit in de visuele, sensorische en associatieve cortices. Dit kan dan weer leiden tot hersenactiviteit in de motorische cortex, tot een ander gebaar en zo verder. Dit proefschrift beschrijft een hersenonderzoek naar zo’n dergelijke indirecte verbinding tussen twee mensen. Voordat ik in ga op het onderzoek wat we hebben uitgevoerd, is het belangrijk om iets te weten over de achtergrond en inspiratie waarop dit onderzoek is gebaseerd. De afgelopen jaren zijn er twee belangrijke ideeën ontwikkelt over hoe mensen elkaar begrijpen en met elkaar kunnen communiceren: het idee van een spiegelsysteem en een ‘redeneersysteem’. Deze twee ideeën vormen de basis van dit onderzoek en worden beschreven in de volgende paragraven. Verder heeft de ontwikkeling van ‘Granger causaliteit’, een analysemethode om verbindingen tussen hersengebieden vast te stellen ook een belangrijke rol gespeeld, deze wordt hierna beschreven. HE T S P I EGE L S Y S T E EM Het idee van spiegelen is dat ons brein de handelingen van andere mensen ‘nabootst’. Aan de basis van dit idee staat de ontdekking van spiegelneuronen (‘mirror neurons’) in de jaren negentig (Gallese et al., 1996; Pellegrino et al., 1992). Deze spiegelneuronen zijn min of meer per toeval ontdekt in een lab in Parma tijdens het meten van neuronen in het gebied F5 (ventrale premotorische cortex) van deMakaak aap. Een onderzoeker merkte op dat deze neuronen niet alleen reageerden op het moment dat de aap zelf een pinda oppakte, maar ook op het moment dat de aap naar de onderzoeker keek terwijl deze een pinda oppakte. Het was bekend dat deze neuronen betrokken zijn bij het uitvoeren van doelgerichte handelingen met de handen en met de mond. Maar nu werd opeens duidelijk dat deze gebieden ook sensorische eigenschappen bezitten (Kurata and Tanji, 1986; Rizzolatti et al., 1988). Deze neuronen representeren hiermee zowel het uitvoeren van een handeling als de waarneming van die handeling. De ontdekking van spiegelneuronen had een grote impact, omdat hiermee het vermoeden werd bevestigd dat waarnemen en handelen sterk aan elkaar gekoppeld zijn. Dit idee speelde al langer een rol in psychologische theorieën. James Gibson beweerde bijvoorbeeld dat perceptie bestaat uit het direct waarnemen van handelingsmogelijkheden (Gibson, 1986). Kort na de eerste ontdekking van spiegelneuronen wilde men weten of de menselijke hersenen ook zo’n dergelijk mechanisme bezitten. Omdat het meten van een individuele neuron vrijwel niet mogelijk is zonder een brein te beschadigen, richtten onderzoeken zich op de vraag of er wellicht hersengebieden bestaan die activiteit laten zien tijdens zowel het uitvoeren als het waarnemen van een handeling (Buccino et al., 2001; Grafton et al., 1996; Grèzes et al., 1998; Grèzes and Decety, 2001; Grèzes et al., 2003; Nishitani and Hari, 2000, 2002; Perani et al., 2001; Gazzola et al., 2007b,a; Gazzola and Keysers, 2008). Dat blijkt inderdaad zo te zijn en de gebieden met deze eigenschap vormen samen het menselijke spiegelsysteem (Keysers and Gazzola, 2009). Deze gebieden zijn de ventrale en dorsale premotorische cortex, de inferieure parietale cortex en de middelste superieure temporele gyrus (zie Figuur 3). Er bestaan overigens niet alleen spiegelgebieden die een overlap in activiteit laten zien voor het uitvoeren en waarnemen van handelingen, maar ook voor het ervaren en het waarnemen van emoties en sensaties, zoals walging, aanraking en pijn (Wicker et al., 2003; Keysers and Perrett, 2004; Singer et al., 2004; Bastiaansen et al., 2009). Innovatieve experimenten, die bijvoorbeeld gebruikmaken van ‘cross-modal repetition suppression’, hebben inmiddels wetenschappelijk bewijs geleverd voor het bestaan van individuele spiegelneuronen in de menselijke hersenen (Kilner et al., 2009; Lingnau et al., 2009; Chong et al., 2008;Mukamel et al., 2010). Doordat spiegelneuronen een directe link leggen tussen de handelingen die we zelf uitvoeren en de handelingen die we anderen zien doen, wordt aangenomen dat spiegelneuronen een functie hebben in het begrijpen van wat de ander aan het doen is (zie Rizzolatti and Sinigaglia, 2010, voor een recent overzicht van de literatuur). Bij het zien van een handeling van iemand anders wordt de motorische representatie van deze handeling in de eigen hersenen actief, alsof deze handeling zelf wordt uitgevoerd. Dit idee vormt de kern van de simulatietheorie: we begrijpen wat een ander doet doordat we deze handeling als het ware simuleren in onze eigen hersenen (Goldman, 1992; Gibson, 1986; Gallese, 2003). Belangrijk voor het onderzoek in dit proefschrift is dat de simulatietheorie een voorspellingmaakt over spiegelneuronen. Deze theorie beweert namelijk dat spiegelneuronen in het brein van degene die een handeling waarneemt resoneren met de spiegelneuronen van degene die de handeling uitvoert. De term‘resonantie’ wordt hier losjes gebruikt en er wordt mee bedoeld dat de pieken en dalen in de hersenactiviteit van het motorsysteem van de ene persoon overeenkomstige pieken en dalen veroorzaakt in de hersenactiviteit van het motorsysteem in de andere persoon (Gallese and Goldman, 1998; Gallese et al., 2004; Rizzolatti et al., 2001). In Hoofdstuk 4 van dit proefschrift wordt deze bewering over resonantie onderzocht. HE T REDENE ERS Y S T E EM Naast dit spiegelmechanisme waarmee we anderen begrijpen, bezitten we ook een meer reflectief vermogen om na te denken over wat er in anderen omgaat. Denk bijvoorbeeld aan een typische scene uit een soap, zoals The Bold and the Beautiful: Taylor and Ridge staan op het punt om met elkaar in het huwelijk te treden. Zonder dat Taylor dit weet, staat Brooke op het punt om te vertellen dat ze zwanger is van Ridge, hopende dat ze hiermee de bruiloft kan verhinderen. Om zo’n situatie te kunnen begrijpen en te kunnen waarderen, moeten we in staat zijn om bij te houden wat de verschillende personen wel en niet weten en wat ze zullen denken op het moment dat ze het te horen zullen krijgen. Dit soort bewuste denkprocessen wordt in de literatuur wel ‘Theory of Mind’ (ToM) genoemd (Premack andWoodruff, 1978; Wimmer and Perner, 1983) en vindt plaats in andere gebieden dan de spiegelgebieden (Frith and Frith, 1999, 2006). Het zijn de ‘redeneergebieden’ (zie Figuur 3), die actief zijn tijdens bijvoorbeeld het interpreteren van (strip)verhalen en het nadenken over jezelf en anderen (Amodio and Frith, 2006; Fletcher et al., 1995; Frith and Frith, 2006, 2003; Gallagher et al., 2000; Gusnard et al., 2001). De belangrijkste twee gebieden van dit redeneersysteem zijn de ventrale mediale prefrontale cortex en de temporeelparietale junctie. Over the decades, two important networks in the brain have been identified about how people interact: the mirror system and the mentalizing network. This thesis investigates how these networks work together during social interaction. We performed an experiment in which brain activity of two persons was measured while they engaged in a social communication game (Charades). Results showed that the mirror system is highly involved during the game, while the main mentalizing area does not show any involvement. We then extended a connectivity analysis, Granger causality, which is usually applied within one brain, to a between-brain analysis. With this method, we used brain activity of the gesturer to map regions in the brain of the guesser, whose brain activity has a Granger-causal relation to that of the gesturer. The mirror system of the gesturer shows a Granger-causal relation to the mirror system of the guesser, but also to the main mentalizing area of the guesser. This means that, even while this mentalizing area does not show involvement when analyzed using a classic method, it does show a temporal relationship with the brain activity of the gesturer. We furthermore performed simulations to investigate a possible confound of Granger causality: inter- and intrasubject variability in hemodynamic responses. Results show high sensitivity and accuracy for Granger causality between-brains, while sensitivity of within-brain Granger causality remains low. However, if a Grangercausality is found, this indicates the correct underlying direction in 80% of the cases. Finally, we used within-brain Granger causality to investigate how areas in the mirror system influence each other during gesturing and guessing.

    The shaping of social perception by stimulus and knowledge cues to human animacy

    Get PDF
    Contains fulltext : 151462.pdf (publisher's version ) (Closed access)Although robots are becoming an ever-growing presence in society, we do not hold the same expectations for robots as we do for humans, nor do we treat them the same. As such, the ability to recognize cues to human animacy is fundamental for guiding social interactions. We review literature that demonstrates cortical networks associated with person perception, action observation and mentalizing are sensitive to human animacy information. In addition, we show that most prior research has explored stimulus properties of artificial agents (humanness of appearance or motion), with less investigation into knowledge cues (whether an agent is believed to have human or artificial origins). Therefore, currently little is known about the relationship between stimulus and knowledge cues to human animacy in terms of cognitive and brain mechanisms. Using fMRI, an elaborate belief manipulation, and human and robot avatars, we found that knowledge cues to human animacy modulate engagement of person perception and mentalizing networks, while stimulus cues to human animacy had less impact on social brain networks. These findings demonstrate that self-other similarities are not only grounded in physical features but are also shaped by prior knowledge. More broadly, as artificial agents fulfil increasingly social roles, a challenge for roboticists will be to manage the impact of pre-conceived beliefs while optimizing human-like design.12 p

    Brains in interaction

    Get PDF
    corecore