273,780 research outputs found

    Geometrical Ambiguity of Pair Statistics. I. Point Configurations

    Full text link
    Point configurations have been widely used as model systems in condensed matter physics, materials science and biology. Statistical descriptors such as the nn-body distribution function gng_n is usually employed to characterize the point configurations, among which the most extensively used is the pair distribution function g2g_2. An intriguing inverse problem of practical importance that has been receiving considerable attention is the degree to which a point configuration can be reconstructed from the pair distribution function of a target configuration. Although it is known that the pair-distance information contained in g2g_2 is in general insufficient to uniquely determine a point configuration, this concept does not seem to be widely appreciated and general claims of uniqueness of the reconstructions using pair information have been made based on numerical studies. In this paper, we introduce the idea of the distance space, called the D\mathbb{D} space. The pair distances of a specific point configuration are then represented by a single point in the D\mathbb{D} space. We derive the conditions on the pair distances that can be associated with a point configuration, which are equivalent to the realizability conditions of the pair distribution function g2g_2. Moreover, we derive the conditions on the pair distances that can be assembled into distinct configurations. These conditions define a bounded region in the D\mathbb{D} space. By explicitly constructing a variety of degenerate point configurations using the D\mathbb{D} space, we show that pair information is indeed insufficient to uniquely determine the configuration in general. We also discuss several important problems in statistical physics based on the D\mathbb{D} space.Comment: 28 pages, 8 figure

    On the number of tetrahedra with minimum, unit, and distinct volumes in three-space

    Full text link
    We formulate and give partial answers to several combinatorial problems on volumes of simplices determined by nn points in 3-space, and in general in dd dimensions. (i) The number of tetrahedra of minimum (nonzero) volume spanned by nn points in \RR^3 is at most 2/3n3O(n2){2/3}n^3-O(n^2), and there are point sets for which this number is 3/16n3O(n2){3/16}n^3-O(n^2). We also present an O(n3)O(n^3) time algorithm for reporting all tetrahedra of minimum nonzero volume, and thereby extend an algorithm of Edelsbrunner, O'Rourke, and Seidel. In general, for every k,d\in \NN, 1kd1\leq k \leq d, the maximum number of kk-dimensional simplices of minimum (nonzero) volume spanned by nn points in \RR^d is Θ(nk)\Theta(n^k). (ii) The number of unit-volume tetrahedra determined by nn points in \RR^3 is O(n7/2)O(n^{7/2}), and there are point sets for which this number is Ω(n3loglogn)\Omega(n^3 \log \log{n}). (iii) For every d\in \NN, the minimum number of distinct volumes of all full-dimensional simplices determined by nn points in \RR^d, not all on a hyperplane, is Θ(n)\Theta(n).Comment: 19 pages, 3 figures, a preliminary version has appeard in proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 200

    3D black holes on a 2-brane in 4D Minkowski space

    Full text link
    We investigate three-dimensional black hole solutions in the realm of pure and new massive gravity in 2+1 dimensions induced on a 2-brane embedded in a flat four-dimensional spacetime. There is no cosmological constant neither on the brane nor on the four-dimensional bulk. Only gravitational fields are turned on and we indeed find vacuum solutions as black holes in 2+1 dimensions even in the absence of any cosmological solution. There is a crossover scale that controls how far the three- or four-dimensional gravity manifests on the 2-brane. Our solutions also indicate that local BTZ and SdS_3 solutions can flow to local four-dimensional Schwarzschild like black holes, as one probes from small to large distances, which is clearly a higher dimensional manifestation on the 2-brane. This is similar to the DGP scenario where the effects of extra dimensions for large probed distances along the brane manifest.Comment: 10 pages, 5 figures, to appear in PL

    On distinct distances in homogeneous sets in the Euclidean space

    Full text link
    A homogeneous set of nn points in the dd-dimensional Euclidean space determines at least Ω(n2d/(d2+1)/logc(d)n)\Omega(n^{2d/(d^2+1)} / \log^{c(d)} n) distinct distances for a constant c(d)>0c(d)>0. In three-space, we slightly improve our general bound and show that a homogeneous set of nn points determines at least Ω(n.6091)\Omega(n^{.6091}) distinct distances
    corecore