3,779 research outputs found

    Dynamic control strategy of a distillation system for a composition-adjustable organic Rankine cycle

    Get PDF
    Using zeotropic mixtures as working fluids can improve the thermal efficiency of Organic Rankine cycle (ORC) power plants for utilising geothermal energy. However, currently, such ORC systems cannot regulate the composition of zeotropic mixtures when their operating conditions change. A composition-adjustable ORC system could potentially improve the thermal efficiency by closely matching the cycle to the changing ambient conditions provided that the composition of the working fluid mixture can be adjusted in an economic way. In this paper, a dynamic composition control strategy has been proposed and analysed for such a composition-adjustable ORC system. This method employs a distillation column to separate the two components of the mixture, which can then be pumped back to the main ORC system to adjust the composition of the zeotropic mixture to the required level according to the ambient temperature. The dynamic composition control strategy is simulated using an optimisation algorithm. The design method of the distillation column is presented and its dynamic response characteristics have been analysed using Aspen Plus Dynamics. The results indicate that the average power output can be significantly improved using a composition-adjustable ORC system when the ambient temperature decreases. The size of the distillation system is relatively small and its energy (mainly thermal) consumption is only around 1 percent of the system’s input heat. The research results also show that the dynamic response characteristics of the distillation system can satisfy the requirements of the ORC system

    Practical residue curve map analysis applied to solvent recovery in non-ideal binary mixtures by batch distillation processes

    Get PDF
    Batch distillation inherent advantages has initiated recent search for process feasibility rules enabling the separation of azeotropic or difficult zeotropic binary mixtures thanks to the addition of an entrainer. A systematic procedure enabling to find suitable process and eventually suitable entrainer for the separation of zeotropic or azeotropic binary mixture is described. It brings together into practical use batch distillation process feasibility rules, chemical affinity insight and thermodynamic data analysis available in the literature. The procedure has been implemented in a wizard computer tool and is illustrated on the separation of the water – acetonitrile binary homoazeotrope. Through this tool, all possible 224 feasibility rules and 326 batch distillation sequence processes are checked systematically for each entrainer

    A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions

    Get PDF
    Air-cooled condensers are widely used for Organic Rankine Cycle (ORC) power plants where cooling water is unavailable or too costly, but they are then vulnerable to changing ambient air temperatures especially in continental climates, where the air temperature difference between winter and summer can be over 40 °C. A conventional ORC system using a single component working fluid has to be designed according to the maximum air temperature in summer and thus operates far from optimal design conditions for most of the year, leading to low annual average efficiencies. This research proposes a novel dynamic ORC that uses a binary zeotropic mixture as the working fluid, with mechanisms in place to adjust the mixture composition dynamically during operation in response to changing heat sink conditions, significantly improving the overall efficiency of the plant. The working principle of the dynamic ORC concept is analysed. The case study results show that the annual average thermal efficiency can be improved by up to 23% over a conventional ORC when the heat source is 100 °C, while the evaluated increase of the capital cost is less than 7%. The dynamic ORC power plants are particularly attractive for low temperature applications, delivering shorter payback periods compared to conventional ORC systems

    Multiple Steady States in Heterogeneous Azeotropic Distillation

    Get PDF
    In this article we study multiple steady states in ternary heterogeneous azeotropic distillation. We show that in the case of infinite reflux and an infinite number of trays one can construct bifurcation diagrams on physical grounds with the distillate flow as the bifurcation parameter. Multiple steady states exist when the distillate flow varies non-monotonically along the continuation path of the bifurcation diagram. We show how the distillate and bottom product paths can be located for tray or packed columns, with or without decanter and with different types of condenser and reboiler. We derive a necessary and sufficient condition for the existence of these multiple steady states based on the geometry of the product paths. We also locate in the composition triangle the feed compositions that lead to these multiple steady states. We show that the prediction of the existence of multiple steady states in the case of infinite reflux and an infinite number of trays has relevant implications for columns operating at finite reflux and with a finite number of trays

    Batch Extractive Distillation with Light Entrainer

    Get PDF
    Use of a light entrainer in batch extractive distillation is justified when the mixture boils at a high temperature, or when an appropriate heavy or intermediate entrainer cannot be found. Feasibility of batch extractive distillation with light entrainer for separating minimum and maximum boiling azeotropes and close boiling mixtures is studied in this article. Our test mixtures are: ethanol/water (minimum boiling azeotrope) with methanol, water/ethylene diamine (maximum boiling azeotrope) with methanol, and chlorobenzene/ethylbenzene (close boiling mixture) with 4-methylheptane. Feasibility, operating steps, limiting entrainer flows, limiting reflux ratios, and limiting number of theoretical stages are determined by parametric study on profiles maps, and verified by rigorous simulation. The effects of reflux ratio, feed ratio, feed stage, number of stages, and thermodynamic state of the entrainer are also examined. It can be established, as a result, that processes separating either minimum or maximum boiling azeotropes, or close boiling mixtures, in batch extractive distillation using a light entrainer are feasible

    Preliminary Design of Reactive Distillation Columns

    Get PDF
    A procedure that combines feasibility analysis, synthesis and design of reactive distillation columns is introduced. The main interest of this methodology lies on a progressive introduction of the process complexity. From minimal information concerning the physicochemical properties of the system, three steps lead to the design of the unit and the specification of its operating conditions. Most of the methodology exploits and enriches approaches found in the literature. Each step is described and our contribution is underlined. Its application is currently limited to equilibrium reactive systems where degree of freedom is equal to 2 or less than 2. This methodology which provides a reliable initialization point for the optimization of the process has been applied with success to different synthesis. The production of methyl-tert-butyl-ether (MTBE) and methyl acetate are presented as examples

    Organic rankine cycle with positive displacement expander and variable working fluid composition

    Get PDF
    Organic Rankine Cycles are often used in the exploitation of low-temperature heat sources. The relatively small temperature differential available to these projects makes them particularly vulnerable to changing ambient conditions, especially if an air-cooled condenser is used. The authors have recently demonstrated that a dynamic ORC with a variable working fluid composition, tuned to match the condensing temperature with the heat sink, can be used to achieve a considerable increase in year-round power generation under such conditions [1]. However, this assumed the expander was a turbine capable of operating at multiple pressure ratios for large scale applications. This paper will investigate if small scale ORC systems that use positive-displacement expanders with fixed expansion ratios could also benefit from this new concept. In this paper, a numerical model was firstly developed. A comprehensive analysis was then conducted for a case study. The results showed that the dynamic Organic Rankine Cycle concept can be applied to lower-power applications that use that use positive-displacement expanders with fixed expansion ratios and still result in improvements in year-round energy generation

    Infinite/infinite analysis as a tool for an early oriented synthesis of a reactive pressure swing distillation

    Get PDF
    The study contributes to the characterization of an original reactive pressure swing distillation system. The methyl acetate (MeAc) transesterification with ethanol (EtOH) to produce methanol (MeOH) and ethyl acetate (EtAc) is shown as illustrative example. The streams outside the units are evaluated by the ∞/∞ analysis to provide insights on the process behavior. Two simpler systems with recycling stream are also presented.The ∞/∞ analysis allows checking the interrelation of the system streams without any column design consideration. Unfeasible regions, low limit values, multiplicity regions, discontinuities, control difficulties, recommendable operation conditions and column profile combinations are predicted and discussed. All these information are useful to establish an early and suitable system design strategy

    Multiple Steady States in Homogeneous Azeotropic Distillation

    Get PDF
    In this article we study multiple steady states in ternary homogeneous azeotropic distillation. We show that in the case of infinite reflux and an infinite number of trays one can construct bifurcation diagrams on physical grounds with the distillate flow as the bifurcation parameter. Multiple steady states exist when the distillate flow varies non-monotonically along the continuation path of the bifurcation diagram. We derive a necessary and sufficient condition for the existence of these multiple steady states based on the geometry of the distillation region boundaries. We also locate in the composition triangle the feed compositions that lead to these multiple steady states. We further note that most of these results are independent of the thermodynamic model used. We show that the prediction of the existence of multiple steady states in the case of infinite reflux and an infinite number of trays has relevant implications for columns operating at finite reflux and with a finite number of trays. Using numerically constructed bifurcation diagrams for specific examples, we show that these multiplicities tend to vanish for small columns and/or for low reflux flows. Finally, we comment on the effect of multiplicities on column design and operation for some specific examples

    General methodology for exergy balance in ProSimPlus® process simulator

    Get PDF
    This paper presents a general methodology for exergy balance in chemical and thermal processes integrated in ProSimPlus® as a well-adopted process simulator for energy efficiency analysis. In this work, as well as using the general expressions for heat and work streams, all of exergy balance is presented within only one software in order to fully automate exergy analysis. In addition, after exergy balance, the essential elements such as source of irreversibility for exergy analysis are presented to help the user for modifications on either process or utility system. The applicability of the proposed methodology in ProSimPlus® is shown through a simple scheme of Natural Gas Liquids (NGL) recovery process and its steam utility system. The methodology does not only provide the user with necessary exergetic criteria to pinpoint the source of exergy losses, it also helps the user to find the way to reduce the exergy losses. These features of the proposed exergy calculator make it preferable for its implementation in ProSimPlus® to define the most realistic and profitable retrofit projects on the existing chemical and thermal plants
    corecore