32,157 research outputs found

    Distant supervision from knowledge graphs

    Get PDF
    In this chapter, we discuss approaches leveraging distant supervision for relation extraction. We start by introducing the key ideas behind distant supervision as well as their main shortcomings. We then discuss approaches that improve over the basic method, including approaches based on the at-least-one-principle along with their extensions for handling false negative labels, and approaches leveraging topic models. We also describe embeddings-based methods including methods leveraging convolutional neural networks. Finally, we discuss how to take advantage of auxiliary information to improve relation extraction

    Coarse-to-fine Knowledge Graph Domain Adaptation based on Distantly-supervised Iterative Training

    Full text link
    Modern supervised learning neural network models require a large amount of manually labeled data, which makes the construction of domain-specific knowledge graphs time-consuming and labor-intensive. In parallel, although there has been much research on named entity recognition and relation extraction based on distantly supervised learning, constructing a domain-specific knowledge graph from large collections of textual data without manual annotations is still an urgent problem to be solved. In response, we propose an integrated framework for adapting and re-learning knowledge graphs from one coarse domain (biomedical) to a finer-define domain (oncology). In this framework, we apply distant-supervision on cross-domain knowledge graph adaptation. Consequently, no manual data annotation is required to train the model. We introduce a novel iterative training strategy to facilitate the discovery of domain-specific named entities and triples. Experimental results indicate that the proposed framework can perform domain adaptation and construction of knowledge graph efficiently
    corecore