147 research outputs found

    The icosahedron is clique divergent

    Get PDF
    AbstractA clique of a graph G is a maximal complete subgraph. The clique graph k(G) is the intersection graph of the set of all cliques of G. The iterated clique graphs are defined recursively by k0(G)=G and kn+1(G)=k(kn(G)). A graph G is said to be clique divergent (or k-divergent) if limn→∞|V(kn(G))|=∞. The problem of deciding whether the icosahedron is clique divergent or not was (implicitly) stated Neumann-Lara in 1981 and then cited by Neumann-Lara in 1991 and Larrión and Neumann-Lara in 2000. This paper proves the clique divergence of the icosahedron among other results of general interest in clique divergence theory

    The complexity of clique graph recognition

    Get PDF
    A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.Facultad de Ciencias Exacta

    The complexity of clique graph recognition

    Get PDF
    A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.Facultad de Ciencias Exacta

    Beyond Helly graphs: the diameter problem on absolute retracts

    Full text link
    Characterizing the graph classes such that, on nn-vertex mm-edge graphs in the class, we can compute the diameter faster than in O(nm){\cal O}(nm) time is an important research problem both in theory and in practice. We here make a new step in this direction, for some metrically defined graph classes. Specifically, a subgraph HH of a graph GG is called a retract of GG if it is the image of some idempotent endomorphism of GG. Two necessary conditions for HH being a retract of GG is to have HH is an isometric and isochromatic subgraph of GG. We say that HH is an absolute retract of some graph class C{\cal C} if it is a retract of any G∈CG \in {\cal C} of which it is an isochromatic and isometric subgraph. In this paper, we study the complexity of computing the diameter within the absolute retracts of various hereditary graph classes. First, we show how to compute the diameter within absolute retracts of bipartite graphs in randomized O~(mn)\tilde{\cal O}(m\sqrt{n}) time. For the special case of chordal bipartite graphs, it can be improved to linear time, and the algorithm even computes all the eccentricities. Then, we generalize these results to the absolute retracts of kk-chromatic graphs, for every fixed k≥3k \geq 3. Finally, we study the diameter problem within the absolute retracts of planar graphs and split graphs, respectively

    Author index to volume

    Get PDF
    • …
    corecore