1,029 research outputs found

    Large induced subgraphs via triangulations and CMSO

    Full text link
    We obtain an algorithmic meta-theorem for the following optimization problem. Let \phi\ be a Counting Monadic Second Order Logic (CMSO) formula and t be an integer. For a given graph G, the task is to maximize |X| subject to the following: there is a set of vertices F of G, containing X, such that the subgraph G[F] induced by F is of treewidth at most t, and structure (G[F],X) models \phi. Some special cases of this optimization problem are the following generic examples. Each of these cases contains various problems as a special subcase: 1) "Maximum induced subgraph with at most l copies of cycles of length 0 modulo m", where for fixed nonnegative integers m and l, the task is to find a maximum induced subgraph of a given graph with at most l vertex-disjoint cycles of length 0 modulo m. 2) "Minimum \Gamma-deletion", where for a fixed finite set of graphs \Gamma\ containing a planar graph, the task is to find a maximum induced subgraph of a given graph containing no graph from \Gamma\ as a minor. 3) "Independent \Pi-packing", where for a fixed finite set of connected graphs \Pi, the task is to find an induced subgraph G[F] of a given graph G with the maximum number of connected components, such that each connected component of G[F] is isomorphic to some graph from \Pi. We give an algorithm solving the optimization problem on an n-vertex graph G in time O(#pmc n^{t+4} f(t,\phi)), where #pmc is the number of all potential maximal cliques in G and f is a function depending of t and \phi\ only. We also show how a similar running time can be obtained for the weighted version of the problem. Pipelined with known bounds on the number of potential maximal cliques, we deduce that our optimization problem can be solved in time O(1.7347^n) for arbitrary graphs, and in polynomial time for graph classes with polynomial number of minimal separators

    Joint scaling limit of site percolation on random triangulations in the metric and peanosphere sense

    Full text link
    Recent works have shown that random triangulations decorated by critical (p=1/2p=1/2) Bernoulli site percolation converge in the scaling limit to a 8/3\sqrt{8/3}-Liouville quantum gravity (LQG) surface (equivalently, a Brownian surface) decorated by SLE6_6 in two different ways: 1. The triangulation, viewed as a curve-decorated metric measure space equipped with its graph distance, the counting measure on vertices, and a single percolation interface converges with respect to a version of the Gromov-Hausdorff topology. 2. There is a bijective encoding of the site-percolated triangulation by means of a two-dimensional random walk, and this walk converges to the correlated two-dimensional Brownian motion which encodes SLE6_6-decorated 8/3\sqrt{8/3}-LQG via the mating-of-trees theorem of Duplantier-Miller-Sheffield (2014); this is sometimes called peanosphere convergence\textit{peanosphere convergence}. We prove that one in fact has joint\textit{joint} convergence in both of these two senses simultaneously. We also improve the metric convergence result by showing that the map decorated by the full collection of percolation interfaces (rather than just a single interface) converges to 8/3\sqrt{8/3}-LQG decorated by CLE6_6 in the metric space sense. This is the first work to prove simultaneous convergence of any random planar map model in the metric and peanosphere senses. Moreover, this work is an important step in an ongoing program to prove that random triangulations embedded into C\mathbb C via the so-called Cardy embedding\textit{Cardy embedding} converge to 8/3\sqrt{8/3}-LQG.Comment: 55 pages; 13 Figures. Minor revision according to a referee report. Accepted for publication at EJ

    Geometric auxetics

    Get PDF
    We formulate a mathematical theory of auxetic behavior based on one-parameter deformations of periodic frameworks. Our approach is purely geometric, relies on the evolution of the periodicity lattice and works in any dimension. We demonstrate its usefulness by predicting or recognizing, without experiment, computer simulations or numerical approximations, the auxetic capabilities of several well-known structures available in the literature. We propose new principles of auxetic design and rely on the stronger notion of expansive behavior to provide an infinite supply of planar auxetic mechanisms and several new three-dimensional structures

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm
    corecore