612 research outputs found

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Performance Evaluation of Class A LoRa Communications

    Get PDF
    Recently, Low Power Wide Area Networks (LPWANs) have attracted a great interest due to the need of connecting more and more devices to the so-called Internet of Things (IoT). This thesis explores LoRa’s suitability and performance within this paradigm, through a theoretical approach as well as through practical data acquired in multiple field campaigns. First, a performance evaluation model of LoRa class A devices is proposed. The model is meant to characterize the performance of LoRa’s Uplink communications where both physical layer (PHY) and medium access control (MAC) are taken into account. By admitting a uniform spatial distribution of the devices, the performance characterization of the PHY-layer is studied through the derivation of the probability of successfully decoding multiple frames that were transmitted with the same spreading factor and at the same time. The MAC performance is evaluated by admitting that the inter-arrival time of the frames generated by each LoRa device is exponentially distributed. A typical LoRaWAN operating scenario is considered, where the transmissions of LoRa Class A devices suffer path-loss, shadowing and Rayleigh fading. Numerical results obtained with the modeling methodology are compared with simulation results, and the validation of the proposed model is discussed for different levels of traffic load and PHY-layer conditions. Due to the possibility of capturing multiple frames simultaneously, the maximum achievable performance of the PHY/MAC LoRa scheme according to the signal-to-interference-plus-noise ratio (SINR) is considered. The contribution of this model is primarily focused on studying the average number of successfully received LoRa frames, which establishes a performance upper bound due to the optimal capture condition considered in the PHY-layer. In the second stage of this work a practical LoRa point-to-point network was deployed to characterize LoRa’s performance in a practical way. Performance was assessed through data collected in the course of several experiments, positioning the transmitter in diverse locations and environments. This work reports statistics of the received packets and different metrics gathered from the physical-layer

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Contention techniques for opportunistic communication in wireless mesh networks

    Get PDF
    Auf dem Gebiet der drahtlosen Kommunikation und insbesondere auf den tieferen Netzwerkschichten sind gewaltige Fortschritte zu verzeichnen. Innovative Konzepte und Technologien auf der physikalischen Schicht (PHY) gehen dabei zeitnah in zelluläre Netze ein. Drahtlose Maschennetzwerke (WMNs) können mit diesem Innovationstempo nicht mithalten. Die Mehrnutzer-Kommunikation ist ein Grundpfeiler vieler angewandter PHY Technologien, die sich in WMNs nur ungenügend auf die etablierte Schichtenarchitektur abbilden lässt. Insbesondere ist das Problem des Scheduling in WMNs inhärent komplex. Erstaunlicherweise ist der Mehrfachzugriff mit Trägerprüfung (CSMA) in WMNs asymptotisch optimal obwohl das Verfahren eine geringe Durchführungskomplexität aufweist. Daher stellt sich die Frage, in welcher Weise das dem CSMA zugrunde liegende Konzept des konkurrierenden Wettbewerbs (engl. Contention) für die Integration innovativer PHY Technologien verwendet werden kann. Opportunistische Kommunikation ist eine Technik, die die inhärenten Besonderheiten des drahtlosen Kanals ausnutzt. In der vorliegenden Dissertation werden CSMA-basierte Protokolle für die opportunistische Kommunikation in WMNs entwickelt und evaluiert. Es werden dabei opportunistisches Routing (OR) im zustandslosen Kanal und opportunistisches Scheduling (OS) im zustandsbehafteten Kanal betrachtet. Ziel ist es, den Durchsatz von elastischen Paketflüssen gerecht zu maximieren. Es werden Modelle für Überlastkontrolle, Routing und konkurrenzbasierte opportunistische Kommunikation vorgestellt. Am Beispiel von IEEE 802.11 wird illustriert, wie der schichtübergreifende Entwurf in einem Netzwerksimulator prototypisch implementiert werden kann. Auf Grundlage der Evaluationsresultate kann der Schluss gezogen werden, dass die opportunistische Kommunikation konkurrenzbasiert realisierbar ist. Darüber hinaus steigern die vorgestellten Protokolle den Durchsatz im Vergleich zu etablierten Lösungen wie etwa DCF, DSR, ExOR, RBAR und ETT.In the field of wireless communication, a tremendous progress can be observed especially at the lower layers. Innovative physical layer (PHY) concepts and technologies can be rapidly assimilated in cellular networks. Wireless mesh networks (WMNs), on the other hand, cannot keep up with the speed of innovation at the PHY due to their flat and decentralized architecture. Many innovative PHY technologies rely on multi-user communication, so that the established abstraction of the network stack does not work well for WMNs. The scheduling problem in WMNs is inherent complex. Surprisingly, carrier sense multiple access (CSMA) in WMNs is asymptotically utility-optimal even though it has a low computational complexity and does not involve message exchange. Hence, the question arises whether CSMA and the underlying concept of contention allows for the assimilation of advanced PHY technologies into WMNs. In this thesis, we design and evaluate contention protocols based on CSMA for opportunistic communication in WMNs. Opportunistic communication is a technique that relies on multi-user diversity in order to exploit the inherent characteristics of the wireless channel. In particular, we consider opportunistic routing (OR) and opportunistic scheduling (OS) in memoryless and slow fading channels, respectively. We present models for congestion control, routing and contention-based opportunistic communication in WMNs in order to maximize both throughput and fairness of elastic unicast traffic flows. At the instance of IEEE 802.11, we illustrate how the cross-layer algorithms can be implemented within a network simulator prototype. Our evaluation results lead to the conclusion that contention-based opportunistic communication is feasible. Furthermore, the proposed protocols increase both throughput and fairness in comparison to state-of-the-art approaches like DCF, DSR, ExOR, RBAR and ETT

    Feasibility of Using Passive Monitoring Techniques in Mesh Networks for the Support of Routing

    Get PDF
    In recent years, Wireless Mesh Networks (WMNs) have emerged as a promising solution to provide low cost access networks that extend Internet access and other networking services. Mesh routers form the backbone connectivity through cooperative routing in an often unstable wireless medium. Therefore, the techniques used to monitor and manage the performance of the wireless network are expected to play a significant role in providing the necessary performance metrics to help optimize the link performance in WMNs. This thesis initially presents an assessment of the correlation between passive monitoring and active probing techniques used for link performance measurement in single radio WMNs. The study reveals that by combining multiple performance metrics obtained by using passive monitoring, a high correlation with active probing can be achieved. The thesis then addresses the problem of the system performance degradation associated with simultaneous activation of multiple radios within a mesh node in a multi-radio environment. The experiments results suggest that the finite computing resource seems to be the limiting factor in the performance of a multi-radio mesh network. Having studied this characteristic of multi-radio networks, a similar approach as used in single radio mesh network analysis was taken to investigate the feasibility of passive monitoring in a multi-radio environment. The accuracy of the passive monitoring technique was compared with that of the active probing technique and the conclusion reached is that passive monitoring is a viable alternative to active probing technique in multi-radio mesh networks

    Five decades of hierarchical modulation and its benefits in relay-aided networking

    No full text
    Hierarchical modulation (HM), which is also known as layered modulation, has been widely adopted across the telecommunication industry. Its strict backward compatibility with single-layer modems and its low complexity facilitate the seamless upgrading of wireless communication services. The specific features of HM may be conveniently exploited for improving the throughput/information-rate of the system without requiring any extra bandwidth, while its complexity may even be lower than that of the equivalent system relying on conventional modulation schemes. As a recent research trend, the potential employment of HM in the context of cooperative communications has also attracted substantial research interests. Motivated by the lower complexity and higher flexibility of HM, we provide a comprehensive survey and conclude with a range of promising future research directions. Our contribution is the conception of a new cooperative communication paradigm relying on turbo trellis-coded modulation-aided twin-layer HM-16QAM and the analytical performance investigation of a four-node cooperative communication network employing a novel opportunistic routing algorithm. The specific performance characteristics evaluated include the distribution of delay, the outage probability, the transmit power of each node, the average packet power consumption, and the system throughput. The simulation results have demonstrated that when transmitting the packets formed by layered modulated symbol streams, our opportunistic routing algorithm is capable of reducing the transmit power required for each node in the network compared with that of the system using the traditional opportunistic routing algorithm. We have also illustrated that the minimum packet power consumption of our system using our opportunistic routing algorithm is also lower than that of the system using the traditional opportunistic routing algorithm

    Interference in vehicle-to-vehicle communication networks - analysis, modeling, simulation and assessment

    Get PDF
    In wireless vehicular communication networks the periodic transmission of status updates by all vehicles represents a basic service primitive, in particular for safety related applications. Due to the limited communication resources the question raises how much data each node may provide such that the quality of service required by applications can still be guaranteed under realistic interference conditions. Local broadcasts capacity is introduced and analyzed to tackle this open question
    corecore