580 research outputs found

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications

    Resource management for next generation multi-service mobile network

    Get PDF

    Social relationship based routing for delay tolerant Bluetooth-enabled PSN communications

    Get PDF
    PhDOpportunistic networking is a concept derived from the mobile ad hoc networking in which devices have no prior knowledge of routes to the intended destinations. Content dissemination in opportunistic networks thus is carried out in a store and forward fashion. Opportunistic routing poses distinct challenges compared to the traditional networks such as Internet and mobile ad hoc networks where nodes have prior knowledge of the routes to the intended destinations. Information dissemination in opportunistic networks requires dealing with intermittent connectivity, variable delays, short connection durations and dynamic topology. Addressing these challenges becomes a significant motivation for developing novel applications and protocols for information dissemination in opportunistic networks. This research looks at opportunistic networking, specifically at networks composed of mobile devices or, pocket switched networks. Mobile devices are now accepted as an integral part of society and are often equipped with Bluetooth capabilities that allow for opportunistic information sharing between devices. The ad hoc nature of opportunistic networks means nodes have no advance routing knowledge and this is key challenge. Human social relationships are based on certain patterns that can be exploited to make opportunistic routing decisions. Targeting nodes that evidence high popularity or high influence can enable more efficient content dissemination. Based on this observation, a novel impact based neighbourhood algorithm called Lobby Influence is presented. The algorithm is tested against two previously proposed algorithms and proves better in terms of message delivery and delay. Moreover, unlike other social based algorithms, which have a tendency to concentrate traffic through their identified routing nodes, the new algorithm provides a fairer load distribution, thus alleviating the tendency to saturate individual nodes
    • …
    corecore