572 research outputs found

    Efficient Simultaneous Task and Motion Planning for Multiple Mobile Robots Using Task Reachability Graphs

    Get PDF
    In this thesis, we consider the problem of efficient navigation by robots in initially unknown environments while performing tasks at certain locations. In initially unknown environments, the path plans might change dynamically as the robot discovers obstacles along its route. Because robots have limited energy, adaptations to the task schedule of the robot in conjunction with updates to its path plan are required so that the robot can perform its tasks while reducing time and energy expended. However, most existing techniques consider robot path planning and task planning as separate problems. This thesis plans to bridge this gap by developing a unified approach for navigating multiple robots in uncertain environments. We first formalize this as a problem called task ordering with path uncertainty (TOP-U) where robots are provided with a set of task locations to visit in a bounded environment, but the length of the path between a pair of task locations is initially known only coarsely by the robots. The robots must find the order of tasks that reduces the path length to visit the task locations. We then propose an abstraction called a task reachability graph (TRG) that integrates the robots task ordering and path planning. The TRG is updated dynamically based on inter-task path costs calculated by the path planner. A Hidden Markov Model-based technique calculates the belief in the current path costs based on the environment perceived by the robot’s sensors. We then describe a Markov Decision Process-based algorithm used by each robot in a distributed manner to reason about the path lengths between tasks and select the paths that reduce the overall path length to visit the task locations. We have evaluated our algorithm in simulated and hardware robots. Our results show that the TRG-based approach performs up to 60% better in planning and locomotion times with 44% fewer replans, while traveling almost-similar distances as compared to a greedy, nearest task-first selection algorithm

    Scaling Robot Motion Planning to Multi-core Processors and the Cloud

    Get PDF
    Imagine a world in which robots safely interoperate with humans, gracefully and efficiently accomplishing everyday tasks. The robot's motions for these tasks, constrained by the design of the robot and task at hand, must avoid collisions with obstacles. Unfortunately, planning a constrained obstacle-free motion for a robot is computationally complex---often resulting in slow computation of inefficient motions. The methods in this dissertation speed up this motion plan computation with new algorithms and data structures that leverage readily available parallel processing, whether that processing power is on the robot or in the cloud, enabling robots to operate safer, more gracefully, and with improved efficiency. The contributions of this dissertation that enable faster motion planning are novel parallel lock-free algorithms, fast and concurrent nearest neighbor searching data structures, cache-aware operation, and split robot-cloud computation. Parallel lock-free algorithms avoid contention over shared data structures, resulting in empirical speedup proportional to the number of CPU cores working on the problem. Fast nearest neighbor data structures speed up searching in SO(3) and SE(3) metric spaces, which are needed for rigid body motion planning. Concurrent nearest neighbor data structures improve searching performance on metric spaces common to robot motion planning problems, while providing asymptotic wait-free concurrent operation. Cache-aware operation avoids long memory access times, allowing the algorithm to exhibit superlinear speedup. Split robot-cloud computation enables robots with low-power CPUs to react to changing environments by having the robot compute reactive paths in real-time from a set of motion plan options generated in a computationally intensive cloud-based algorithm. We demonstrate the scalability and effectiveness of our contributions in solving motion planning problems both in simulation and on physical robots of varying design and complexity. Problems include finding a solution to a complex motion planning problem, pre-computing motion plans that converge towards the optimal, and reactive interaction with dynamic environments. Robots include 2D holonomic robots, 3D rigid-body robots, a self-driving 1/10 scale car, articulated robot arms with and without mobile bases, and a small humanoid robot.Doctor of Philosoph

    Toward safe and stable time-delayed mobile robot teleoperation through sampling-based path planning

    Get PDF
    This work proposes a teleoperation architecture for mobile robots in partially unknown environments under the presence of variable time delay. The system is provided with artificial intelligence represented by a probabilistic path planner that, in combination with a prediction module, assists the operator while guaranteeing a collision-free motion. For this purpose, a certain level of autonomy is given to the system. The structure was tested in indoor environments for different kinds of operators. A maximum time delay of 2s was successfully coped with. © 2011 Cambridge University Press
    • …
    corecore