931 research outputs found

    Frequency Analysis of Gradient Estimators in Volume Rendering

    Get PDF
    Gradient information is used in volume rendering to classify and color samples along a ray. In this paper, we present an analysis of the theoretically ideal gradient estimator and compare it to some commonly used gradient estimators. A new method is presented to calculate the gradient at arbitrary sample positions, using the derivative of the interpolation filter as the basis for the new gradient filter. As an example, we will discuss the use of the derivative of the cubic spline. Comparisons with several other methods are demonstrated. Computational efficiency can be realized since parts of the interpolation computation can be leveraged in the gradient estimatio

    Digital objects in rhombic dodecahedron grid

    Get PDF
    Rhombic dodecahedron is a space filling polyhedron which represents the close packing of spheres in 3D space and the Voronoi structures of the face centered cubic (FCC) lattice. In this paper, we describe a new coordinate system where every 3-integer coordinates grid point corresponds to a rhombic dodecahedron centroid. In order to illustrate the interest of the new coordinate system, we propose the characterization of 3D digital plane with its topological features, such as the interrelation between the thickness of the digital plane and the separability constraint we aim to obtain. We also present the characterization of 3D digital lines and study it as the intersection of multiple digital planes. Characterization of 3D digital sphere with relevant topological features is proposed as well along with the 48-symmetry appearing in the new coordinate system

    Distance-based skeletonization on the BCC grid

    Get PDF
    Strand proposed a distance-based thinning algorithm for computing surface skeletons on the body-centered cubic (BCC) grid. In this paper, we present two modified versions of this algorithm that are faster than the original one, and less sensitive to the visiting order of points in the sequential thinning phase. In addition, a novel algorithm capable of producing curve skeletons is also reported

    Time-varying volume visualization

    Get PDF
    Volume rendering is a very active research field in Computer Graphics because of its wide range of applications in various sciences, from medicine to flow mechanics. In this report, we survey a state-of-the-art on time-varying volume rendering. We state several basic concepts and then we establish several criteria to classify the studied works: IVR versus DVR, 4D versus 3D+time, compression techniques, involved architectures, use of parallelism and image-space versus object-space coherence. We also address other related problems as transfer functions and 2D cross-sections computation of time-varying volume data. All the papers reviewed are classified into several tables based on the mentioned classification and, finally, several conclusions are presented.Preprin

    Computerized Classification of Surface Spikes in Three-Dimensional Electron Microscopic Reconstructions of Viruses

    Full text link
    The purpose of this research is to develop computer techniques for improved three-dimensional (3D) reconstruction of viruses from electron microscopic images of them and for the subsequent improved classification of the surface spikes in the resulting reconstruction. The broader impact of such work is the following. Influenza is an infectious disease caused by rapidly-changing viruses that appear seasonally in the human population. New strains of influenza viruses appear every year, with the potential to cause a serious global pandemic. Two kinds of spikes – hemagglutinin (HA) and neuraminidase (NA) – decorate the surface of the virus particles and these proteins are primarily responsible for the antigenic changes observed in influenza viruses. Identification of the locations of the surface spikes of both kinds in a new strain of influenza virus can be of critical importance for the development of a vaccine that protects against such a virus. Two major categories of reconstruction techniques are transform methods such as weighted backprojection (WBP) and series expansion methods such as the algebraic reconstruction techniques (ART) and the simultaneous iterative reconstruction technique (SIRT). Series expansion methods aim at estimating the object to be reconstructed by a linear combination of some fixed basis functions and they typically estimate the coefficients in such an expansion by an iterative algorithm. The choice of the set of basis functions greatly influences the efficacy of the output of a series expansion method. It has been demonstrated that using spherically symmetric basis functions (blobs), instead of the more traditional voxels, results in reconstructions of superior quality. Our own research shows that, with the recommended data-processing steps performed on the projection images prior to reconstruction, ART (with its free parameters appropriately tuned) provides 3D reconstructions of viruses from tomographic tilt series that allow reliable quantification of the surface proteins and that the same is not achieved using WBP or SIRT, which are the methods that have been routinely applied by practicing electron microscopists. Image segmentation is the process of recognizing different objects in an image. Segmenting an object from a background is not a trivial task, especially when the image is corrupted by noise and/or shading. One concept that has been successfully used to achieve segmentation in such corrupted images is fuzzy connectedness. This technique assigns to each element in an image a grade of membership in an object. Classifications methods use set of relevant features to identify the objects of each class. To distinguish between HA and NA spikes in this research, discussions with biologists suggest that there may be a single feature that can be used reliably for the classification process. The result of the fuzzy connectedness technique we conducted to segment spikes from the background confirms the correctness of the biologists’ assumption. The single feature we used is the ratio of the width of the spike’s head to the width of its stem in 3D space; the ratio appears to be greater for NA than it is for HA. The proposed classifier is tested on different types of 3D reconstructions derived from simulated data. A statistical hypothesis testing based methodology allowed us to evaluate the relative suitability of reconstruction methods for the given classification task

    Discrete Imaging Models for Three-Dimensional Optoacoustic Tomography using Radially Symmetric Expansion Functions

    Full text link
    Optoacoustic tomography (OAT), also known as photoacoustic tomography, is an emerging computed biomedical imaging modality that exploits optical contrast and ultrasonic detection principles. Iterative image reconstruction algorithms that are based on discrete imaging models are actively being developed for OAT due to their ability to improve image quality by incorporating accurate models of the imaging physics, instrument response, and measurement noise. In this work, we investigate the use of discrete imaging models based on Kaiser-Bessel window functions for iterative image reconstruction in OAT. A closed-form expression for the pressure produced by a Kaiser-Bessel function is calculated, which facilitates accurate computation of the system matrix. Computer-simulation and experimental studies are employed to demonstrate the potential advantages of Kaiser-Bessel function-based iterative image reconstruction in OAT

    Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps

    Full text link
    Visual robot navigation within large-scale, semi-structured environments deals with various challenges such as computation intensive path planning algorithms or insufficient knowledge about traversable spaces. Moreover, many state-of-the-art navigation approaches only operate locally instead of gaining a more conceptual understanding of the planning objective. This limits the complexity of tasks a robot can accomplish and makes it harder to deal with uncertainties that are present in the context of real-time robotics applications. In this work, we present Topomap, a framework which simplifies the navigation task by providing a map to the robot which is tailored for path planning use. This novel approach transforms a sparse feature-based map from a visual Simultaneous Localization And Mapping (SLAM) system into a three-dimensional topological map. This is done in two steps. First, we extract occupancy information directly from the noisy sparse point cloud. Then, we create a set of convex free-space clusters, which are the vertices of the topological map. We show that this representation improves the efficiency of global planning, and we provide a complete derivation of our algorithm. Planning experiments on real world datasets demonstrate that we achieve similar performance as RRT* with significantly lower computation times and storage requirements. Finally, we test our algorithm on a mobile robotic platform to prove its advantages.Comment: 8 page

    MeshDiffusion: Score-based Generative 3D Mesh Modeling

    Full text link
    We consider the task of generating realistic 3D shapes, which is useful for a variety of applications such as automatic scene generation and physical simulation. Compared to other 3D representations like voxels and point clouds, meshes are more desirable in practice, because (1) they enable easy and arbitrary manipulation of shapes for relighting and simulation, and (2) they can fully leverage the power of modern graphics pipelines which are mostly optimized for meshes. Previous scalable methods for generating meshes typically rely on sub-optimal post-processing, and they tend to produce overly-smooth or noisy surfaces without fine-grained geometric details. To overcome these shortcomings, we take advantage of the graph structure of meshes and use a simple yet very effective generative modeling method to generate 3D meshes. Specifically, we represent meshes with deformable tetrahedral grids, and then train a diffusion model on this direct parametrization. We demonstrate the effectiveness of our model on multiple generative tasks.Comment: Published in ICLR 2023 (Spotlight, Notable-top-25%
    • …
    corecore