5,145 research outputs found

    Time-Agnostic Prediction: Predicting Predictable Video Frames

    Full text link
    Prediction is arguably one of the most basic functions of an intelligent system. In general, the problem of predicting events in the future or between two waypoints is exceedingly difficult. However, most phenomena naturally pass through relatively predictable bottlenecks---while we cannot predict the precise trajectory of a robot arm between being at rest and holding an object up, we can be certain that it must have picked the object up. To exploit this, we decouple visual prediction from a rigid notion of time. While conventional approaches predict frames at regularly spaced temporal intervals, our time-agnostic predictors (TAP) are not tied to specific times so that they may instead discover predictable "bottleneck" frames no matter when they occur. We evaluate our approach for future and intermediate frame prediction across three robotic manipulation tasks. Our predictions are not only of higher visual quality, but also correspond to coherent semantic subgoals in temporally extended tasks.Comment: 8 pages, plus appendice

    L2AE-D: Learning to Aggregate Embeddings for Few-shot Learning with Meta-level Dropout

    Full text link
    Few-shot learning focuses on learning a new visual concept with very limited labelled examples. A successful approach to tackle this problem is to compare the similarity between examples in a learned metric space based on convolutional neural networks. However, existing methods typically suffer from meta-level overfitting due to the limited amount of training tasks and do not normally consider the importance of the convolutional features of different examples within the same channel. To address these limitations, we make the following two contributions: (a) We propose a novel meta-learning approach for aggregating useful convolutional features and suppressing noisy ones based on a channel-wise attention mechanism to improve class representations. The proposed model does not require fine-tuning and can be trained in an end-to-end manner. The main novelty lies in incorporating a shared weight generation module that learns to assign different weights to the feature maps of different examples within the same channel. (b) We also introduce a simple meta-level dropout technique that reduces meta-level overfitting in several few-shot learning approaches. In our experiments, we find that this simple technique significantly improves the performance of the proposed method as well as various state-of-the-art meta-learning algorithms. Applying our method to few-shot image recognition using Omniglot and miniImageNet datasets shows that it is capable of delivering a state-of-the-art classification performance

    An empirical study on evaluation metrics of generative adversarial networks

    Full text link
    Evaluating generative adversarial networks (GANs) is inherently challenging. In this paper, we revisit several representative sample-based evaluation metrics for GANs, and address the problem of how to evaluate the evaluation metrics. We start with a few necessary conditions for metrics to produce meaningful scores, such as distinguishing real from generated samples, identifying mode dropping and mode collapsing, and detecting overfitting. With a series of carefully designed experiments, we comprehensively investigate existing sample-based metrics and identify their strengths and limitations in practical settings. Based on these results, we observe that kernel Maximum Mean Discrepancy (MMD) and the 1-Nearest-Neighbor (1-NN) two-sample test seem to satisfy most of the desirable properties, provided that the distances between samples are computed in a suitable feature space. Our experiments also unveil interesting properties about the behavior of several popular GAN models, such as whether they are memorizing training samples, and how far they are from learning the target distribution.Comment: arXiv admin note: text overlap with arXiv:1802.03446 by other author

    Improving Nighttime Retrieval-Based Localization

    Full text link
    Outdoor visual localization is a crucial component to many computer vision systems. We propose an approach to localization from images that is designed to explicitly handle the strong variations in appearance happening between daytime and nighttime. As revealed by recent long-term localization benchmarks, both traditional feature-based and retrieval-based approaches still struggle to handle such changes. Our novel localization method combines a state-of-the-art image retrieval architecture with condition-specific sub-networks allowing the computation of global image descriptors that are explicitly dependent of the capturing conditions. We show that our approach improves localization by a factor of almost 300\% compared to the popular VLAD-based methods on nighttime localization

    Learning a Multi-View Stereo Machine

    Full text link
    We present a learnt system for multi-view stereopsis. In contrast to recent learning based methods for 3D reconstruction, we leverage the underlying 3D geometry of the problem through feature projection and unprojection along viewing rays. By formulating these operations in a differentiable manner, we are able to learn the system end-to-end for the task of metric 3D reconstruction. End-to-end learning allows us to jointly reason about shape priors while conforming geometric constraints, enabling reconstruction from much fewer images (even a single image) than required by classical approaches as well as completion of unseen surfaces. We thoroughly evaluate our approach on the ShapeNet dataset and demonstrate the benefits over classical approaches as well as recent learning based methods

    Semantic Instance Segmentation via Deep Metric Learning

    Full text link
    We propose a new method for semantic instance segmentation, by first computing how likely two pixels are to belong to the same object, and then by grouping similar pixels together. Our similarity metric is based on a deep, fully convolutional embedding model. Our grouping method is based on selecting all points that are sufficiently similar to a set of "seed points", chosen from a deep, fully convolutional scoring model. We show competitive results on the Pascal VOC instance segmentation benchmark

    Purely Geometric Scene Association and Retrieval - A Case for Macro Scale 3D Geometry

    Full text link
    We address the problems of measuring geometric similarity between 3D scenes, represented through point clouds or range data frames, and associating them. Our approach leverages macro-scale 3D structural geometry - the relative configuration of arbitrary surfaces and relationships among structures that are potentially far apart. We express such discriminative information in a viewpoint-invariant feature space. These are subsequently encoded in a frame-level signature that can be utilized to measure geometric similarity. Such a characterization is robust to noise, incomplete and partially overlapping data besides viewpoint changes. We show how it can be employed to select a diverse set of data frames which have structurally similar content, and how to validate whether views with similar geometric content are from the same scene. The problem is formulated as one of general purpose retrieval from an unannotated, spatio-temporally unordered database. Empirical analysis indicates that the presented approach thoroughly outperforms baselines on depth / range data. Its depth-only performance is competitive with state-of-the-art approaches with RGB or RGB-D inputs, including ones based on deep learning. Experiments show retrieval performance to hold up well with much sparser databases, which is indicative of the approach's robustness. The approach generalized well - it did not require dataset specific training, and scaled up in our experiments. Finally, we also demonstrate how geometrically diverse selection of views can result in richer 3D reconstructions.Comment: Accepted in ICRA '1

    Hyperbolic Image Embeddings

    Full text link
    Computer vision tasks such as image classification, image retrieval and few-shot learning are currently dominated by Euclidean and spherical embeddings, so that the final decisions about class belongings or the degree of similarity are made using linear hyperplanes, Euclidean distances, or spherical geodesic distances (cosine similarity). In this work, we demonstrate that in many practical scenarios hyperbolic embeddings provide a better alternative

    Scale-Robust Localization Using General Object Landmarks

    Full text link
    Visual localization under large changes in scale is an important capability in many robotic mapping applications, such as localizing at low altitudes in maps built at high altitudes, or performing loop closure over long distances. Existing approaches, however, are robust only up to about a 3x difference in scale between map and query images. We propose a novel combination of deep-learning-based object features and state-of-the-art SIFT point-features that yields improved robustness to scale change. This technique is training-free and class-agnostic, and in principle can be deployed in any environment out-of-the-box. We evaluate the proposed technique on the KITTI Odometry benchmark and on a novel dataset of outdoor images exhibiting changes in visual scale of 7×7\times and greater, which we have released to the public. Our technique consistently outperforms localization using either SIFT features or the proposed object features alone, achieving both greater accuracy and much lower failure rates under large changes in scale

    Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector

    Full text link
    Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is https://github.com/fanq15/Few-Shot-Object-Detection-Dataset.Comment: CVPR2020 Camera Ready. (Fix Figure 3 and Table 5. More implementation details in the supplementary material.
    • …
    corecore