111 research outputs found

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Minimizing Cumulative Batch Processing Time for an Industrial Oven Scheduling Problem

    Get PDF
    We introduce the Oven Scheduling Problem (OSP), a new parallel batch scheduling problem that arises in the area of electronic component manufacturing. Jobs need to be scheduled to one of several ovens and may be processed simultaneously in one batch if they have compatible requirements. The scheduling of jobs must respect several constraints concerning eligibility and availability of ovens, release dates of jobs, setup times between batches as well as oven capacities. Running the ovens is highly energy-intensive and thus the main objective, besides finishing jobs on time, is to minimize the cumulative batch processing time across all ovens. This objective distinguishes the OSP from other batch processing problems which typically minimize objectives related to makespan, tardiness or lateness. We propose to solve this NP-hard scheduling problem via constraint programming (CP) and integer linear programming (ILP) and present corresponding CP- and ILP-models. For an experimental evaluation, we introduce a multi-parameter random instance generator to provide a diverse set of problem instances. Using state-of-the-art solvers, we evaluate the quality and compare the performance of our CP- and ILP-models, which could find optimal solutions for many instances. Furthermore, using our models we are able to provide upper bounds for the whole benchmark set including large-scale instances

    Algorithms for Scheduling Problems

    Get PDF
    This edited book presents new results in the area of algorithm development for different types of scheduling problems. In eleven chapters, algorithms for single machine problems, flow-shop and job-shop scheduling problems (including their hybrid (flexible) variants), the resource-constrained project scheduling problem, scheduling problems in complex manufacturing systems and supply chains, and workflow scheduling problems are given. The chapters address such subjects as insertion heuristics for energy-efficient scheduling, the re-scheduling of train traffic in real time, control algorithms for short-term scheduling in manufacturing systems, bi-objective optimization of tortilla production, scheduling problems with uncertain (interval) processing times, workflow scheduling for digital signal processor (DSP) clusters, and many more

    Advances and Novel Approaches in Discrete Optimization

    Get PDF
    Discrete optimization is an important area of Applied Mathematics with a broad spectrum of applications in many fields. This book results from a Special Issue in the journal Mathematics entitled ‘Advances and Novel Approaches in Discrete Optimization’. It contains 17 articles covering a broad spectrum of subjects which have been selected from 43 submitted papers after a thorough refereeing process. Among other topics, it includes seven articles dealing with scheduling problems, e.g., online scheduling, batching, dual and inverse scheduling problems, or uncertain scheduling problems. Other subjects are graphs and applications, evacuation planning, the max-cut problem, capacitated lot-sizing, and packing algorithms

    Theoretical and Computational Research in Various Scheduling Models

    Get PDF
    Nine manuscripts were published in this Special Issue on “Theoretical and Computational Research in Various Scheduling Models, 2021” of the MDPI Mathematics journal, covering a wide range of topics connected to the theory and applications of various scheduling models and their extensions/generalizations. These topics include a road network maintenance project, cost reduction of the subcontracted resources, a variant of the relocation problem, a network of activities with generally distributed durations through a Markov chain, idea on how to improve the return loading rate problem by integrating the sub-tour reversal approach with the method of the theory of constraints, an extended solution method for optimizing the bi-objective no-idle permutation flowshop scheduling problem, the burn-in (B/I) procedure, the Pareto-scheduling problem with two competing agents, and three preemptive Pareto-scheduling problems with two competing agents, among others. We hope that the book will be of interest to those working in the area of various scheduling problems and provide a bridge to facilitate the interaction between researchers and practitioners in scheduling questions. Although discrete mathematics is a common method to solve scheduling problems, the further development of this method is limited due to the lack of general principles, which poses a major challenge in this research field
    corecore