267,862 research outputs found

    Distance k-Sectors Exist

    Full text link
    The bisector of two nonempty sets P and Q in a metric space is the set of all points with equal distance to P and to Q. A distance k-sector of P and Q, where k is an integer, is a (k-1)-tuple (C_1, C_2, ..., C_{k-1}) such that C_i is the bisector of C_{i-1} and C_{i+1} for every i = 1, 2, ..., k-1, where C_0 = P and C_k = Q. This notion, for the case where P and Q are points in Euclidean plane, was introduced by Asano, Matousek, and Tokuyama, motivated by a question of Murata in VLSI design. They established the existence and uniqueness of the distance trisector in this special case. We prove the existence of a distance k-sector for all k and for every two disjoint, nonempty, closed sets P and Q in Euclidean spaces of any (finite) dimension, or more generally, in proper geodesic spaces (uniqueness remains open). The core of the proof is a new notion of k-gradation for P and Q, whose existence (even in an arbitrary metric space) is proved using the Knaster-Tarski fixed point theorem, by a method introduced by Reem and Reich for a slightly different purpose.Comment: 10 pages, 5 figure

    Vacuum Structure, Lorentz Symmetry and Superluminal Particles

    Get PDF
    If textbook Lorentz invariance is actually a property of the equations describing a sector of the excitations of vacuum above some critical distance scale, several sectors of matter with different critical speeds in vacuum can coexist and an absolute rest frame (the vacuum rest frame) may exist without contradicting the apparent Lorentz invariance felt by "ordinary" particles (particles with critical speed in vacuum equal to cc , the speed of light). The sectorial Lorentz symmetry may be only a low-energy limit, in the same way as the relation ω\omega (frequency) = csc_s (speed of sound) kk (wave vector) holds for low-energy phonons in a crystal. We study the consequences of such a scenario, using an ansatz inspired by the Bravais lattice as a model for some vacuum properties. It then turns out that: a) the Greisen-Zatsepin-Kuzmin cutoff on high-energy cosmic protons and nuclei does no longer apply; b) high-momentum unstable particles have longer lifetimes than expected with exact Lorentz invariance, and may even become stable at the highest observed cosmic ray energies or slightly above. Some cosmological implications of superluminal particles are also discussed.Comment: 18 pages, LaTe

    High-Energy Nuclear Physics with Lorentz Symmetry Violation

    Get PDF
    If textbook Lorentz invariance is actually a property of the equations describing a sector of the excitations of vacuum above some critical distance scale, several sectors of matter with different critical speeds in vacuum can coexist and an absolute rest frame (the vacuum rest frame) may exist without contradicting the apparent Lorentz invariance felt by "ordinary" particles (particles with critical speed in vacuum equal to cc, the speed of light). Sectorial Lorentz invariance, reflected by the fact that all particles of a given dynamical sector have the same critical speed in vacuum, will then be an expression of a fundamental sectorial symmetry (e.g. preonic grand unification or extended supersymmetry) protecting a parameter of the equations of motion. Furthermore, the sectorial Lorentz symmetry may be only a low-energy limit, in the same way as the relation ω\omega (frequency) = csc_s (speed of sound) kk (wave vector) holds for low-energy phonons in a crystal. In this context, phenomena such as the absence of Greisen-Zatsepin-Kuzmin cutoff for protons and nuclei and the stability of unstable particles (e.g. neutron, several nuclei...) at very high energy are basic properties of a wide class of noncausal models where local Lorentz invariance is broken introducing a fundamental length. Observable phenomena are expected at very short wavelength scales, even if Lorentz symmetry violation remains invisible to standard low-energy tests. We present a detailed discussion of the implications of Lorentz symmetry violation for very high-energy nuclear physics.Comment: Contributed Paper 435 to the EPS-HEP97 Conference, Jerusalem August 19 - 26, 1997 ; 16 pages, LaTe

    On Vertex- and Empty-Ply Proximity Drawings

    Full text link
    We initiate the study of the vertex-ply of straight-line drawings, as a relaxation of the recently introduced ply number. Consider the disks centered at each vertex with radius equal to half the length of the longest edge incident to the vertex. The vertex-ply of a drawing is determined by the vertex covered by the maximum number of disks. The main motivation for considering this relaxation is to relate the concept of ply to proximity drawings. In fact, if we interpret the set of disks as proximity regions, a drawing with vertex-ply number 1 can be seen as a weak proximity drawing, which we call empty-ply drawing. We show non-trivial relationships between the ply number and the vertex-ply number. Then, we focus on empty-ply drawings, proving some properties and studying what classes of graphs admit such drawings. Finally, we prove a lower bound on the ply and the vertex-ply of planar drawings.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Dark costs, missing data: shedding some light on services trade

    Get PDF
    A structural gravity model is used to estimate barriers to services trade across many sectors, countries and time. Since the disaggregated output data needed to flexibly infer border barriers are often missing for services, we derive a novel methodology for projecting output data. The empirical implementation sheds light on the role of institutions, geography, size and digital infrastructure as determinants of border barriers. We find that border barriers have generally fallen over time but there are differences across sectors and countries. Notably, border effects for the smallest economies have remained stable, giving rise to a divergent pattern across countries
    corecore