6 research outputs found

    Review on energy efficient opportunistic routing protocol for underwater wireless sensor networks

    Get PDF
    Currently, the Underwater Sensor Networks (UWSNs) is mainly an interesting area due to its ability to provide a technology to gather many valuable data from underwater environment such as tsunami monitoring sensor, military tactical application, environmental monitoring and many more. However, UWSNs is suffering from limited energy, high packet loss and the use of acoustic communication. In UWSNs most of the energy consumption is used during the forwarding of packet data from the source to the destination. Therefore, many researchers are eager to design energy efficient routing protocol to minimize energy consumption in UWSNs. As the opportunistic routing (OR) is the most promising method to be used in UWSNs, this paper focuses on the existing proposed energy efficient OR protocol in UWSNs. This paper reviews the existing proposed energy efficient OR protocol, classifying them into 3 categories namely sender-side-based, receiver-side-based and hybrid. Furthermore each of the protocols is reviewed in detail, and its advantages and disadvantages are discussed. Finally, we discuss potential future work research directions in UWSNs, especially for energy efficient OR protocol design

    Enhanced hop-by-hop routing algorithms for underwater acoustic sensor networks

    Get PDF
    Underwater Acoustic Sensor Network (UW-ASN) is a wireless network infrastructure applicable in deep ocean to sense, collect and transmit information to seashore data collector. Underwater sensor network consists of sensor nodes disposed in different depths, equipped with a low bandwidth acoustic modem and acts collaboratively to route the packet from one node to another. Underwater routing protocols provide route information to underwater sensor nodes to transmit collected information efficiently using an optimal path. Routing protocol related to UW-ASN is identified with the issues of low energy consumption, high end-to-end delay and shorter network lifetime. These are due to the distribution of unnecessary information packet flooding in route establishment, improper selection of next hop neighbour and inefficient routing path generation. This research develops a routing protocol that will be able to control flooding of hello packet at information distribution phase, to calculate link quality and composite metric cost for next hop selection and to regularly update the energy status in order to achieve optimum balance in routing path. The developed protocol is called Distance based Reliable and Energy Efficient (DREE) consists of three schemes. The first scheme is called distance calculation and information distribution scheme that calculates the distance between potential neighbours and distribute the local information in an energy efficient manner. The second scheme is route planning and data forwarding scheme in which a node calculates the link quality towards its neighbours and selects a path based on physical distance, link quality and node energy information. Finally, the third scheme is energy balancing scheme that provides each node with new energy status of its neighbours on regular basis. DREE is compared with a Reliable and Energy Efficient routing protocol (R-ERP2R) and Depth based Routing (DBR) protocol. Simulation shows that DREE reducing energy consumption in the information distribution phase by 187% and 179% compared to R-ERP2R in random and grid topology respectively. DREE achieves higher packet delivery ratio of 96% with a similar end-to-end delay as R-ERP2R. DREE improves packet delivery ratio by 7% and 13% over R-ERP2R and DBR, with 9.3% and 201% less energy consumption respectively in data forwarding phase. Finally, DREE improves network lifetime by 18% and 74.5% compared to R-ERP2R and DBR protocols

    A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Full text link
    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research

    Void avoidance opportunistic routing density rank based for underwater sensor networks

    Get PDF
    Currently, the Underwater Sensor Networks (UWSNs) is mainly an attractive area due to its technological ability to gather valuable data from underwater environments such as tsunami monitoring sensors, military tactical applications, and environmental monitoring. However, UWSNs are suffering from limited energy, high packet loss, and the use of acoustic communication which have very limited bandwidth and slow transmission. In UWSNs, the energy consumption used is 125 times more during the forwarding of the packet data from source to destination as compare to during receiving data. For this reason, many researchers are keen to design an energy-efficient routing protocol to minimize the energy consumption in UWSNs while at the same time provide adequate packet delivery ratio and less cumulative delay. As such, the opportunistic routing (OR) is the most promising method to be used in UWSNs due to its unique characteristics such as high path loss, dynamic topology, high energy consumption, and high propagation delay. However, the OR algorithm had also suffered from as higher traffic load for selection next forwarding nodes in the progression area, which suppressed the redundant forwarding packet and caused communication void. There are three new proposed algorithms introduced to address all three issues which resulted from using the OR approach in UWSNs. Firstly, the higher traffic load for selection next forwarding nodes in the problematic progression area problem was addressed by using the Opportunistic Routing Density Based (ORDB) algorithm to minimize the traffic load by introducing a beaconless routing to update the neighbor node information protocol. Secondly, the algorithm Opportunistic Routing Density Rank Based (ORDRB) was developed to deal with redundant packet forwarding by introducing a new method to reduce the redundant packet forwarding while in dense or sparse conditions to improve the energy consumption effectively. Finally, the algorithm Void Avoidance Opportunistic Routing Density Rank Based (ORDRB) was developed to deal with the communication void by introducing a simple method to detect a void node and avoid it during the forwarding process. Simulation results showed that ORDB has improved the network performance in terms of energy tax average (25%, 40%), packet delivery ratio (43%, 23%), and cumulative delay (67%, -42%) compared to DBR and UWFlooding routing protocols. While for ORDRB, the network performance improved in terms of energy tax average (0.9%, 53%, 62%), packet delivery ratio (100%, 83%, 58%) and cumulative delay (-270%, -94%, 55%) compared to WDFAD-DBR, DBR and UWFlooding. Lastly, for VAORDRB, the network performance improved in terms of energy tax average (3%, 8%), packet delivery ratio (167%, 261%), and cumulative delay (68%, 57%) compared to EVA-DBR and WDFAD-DBR. Based on the findings of this study, the protocol VAORDRB is a suitable total solution to reduce the cumulative delay and increase the packet delivery ratio in sparse and dense network deployment

    Enhanced reliable and energy efficient pressure based data forwarding schemes for underwater wireless sensor networks

    Get PDF
    Data collection in Underwater Wireless Sensor Networks (UWSN) requires highly optimized communication approach in order to achieve efficient data packet delivery. This approach consists of different communication layers of which routing protocol is an important consideration. Several issues including packet entrapment due to void region, selection of forwarding node with insufficient link quality and packet collision in congested forwarding area have emanated. Therefore, three different research problems were formulated to address the issue of reliability and energy efficiency in data forwarding in UWSN. First, void handling for packet entrapment in the void region, which generate delays and communication overhead. Second, non-optimal node selection that causes forwarding delays and non-reliable packet delivery. Third, collision due to congestion, which leads to packet drop and unreliable packet delivery. Thus, enhanced reliable and energy-efficient pressure-based data forwarding schemes for UWSN were developed, which are the Communication Void Avoidance (CVA) to estimate neighbour nodes availability outside a void region in order to avoid voids and reduce delay; a Multi-metric Evaluation mechanism for next forwarder Node Selection (MENS) for optimal packet delivery; and a Congestion Avoidance and MITigation (CAMIT) in data forwarding for congestion and collision reduction in order to achieve reliable data forwarding. Several experiments were performed through simulations to access the performance of the proposed mechanisms and the results of each scheme were compared with related previously published protocols. The obtained results depict that the proposed schemes outperformed the existing schemes and significantly improved overall performance. CVA improved Packet Delivery Ratio by 12.8% to 18.7% and reduced End-to-end delay by 7.3% to 12.5% on average. MENS improved communication Data Rate by 13.2% to 15.1% and Energy Consumption improved by 10.6% to 15.3% on average. Lastly, CAMIT reduced Packet Drop ratio by 10.2% to 13% on average. The findings demonstrate the improved efficiency has been achieved by the CVA, MENS and CAMIT in terms of optimal node selection and reliability in packet forwarding in UWSN

    Distance based reliable and energy efficient (DREE) routing protocol for underwater acoustic sensor networks

    No full text
    The distinctive features of Underwater Acoustic Sensor Networks (UW-ASN) such as high propagation delay, asymmetric channels, high errors rates and limited bandwidth cause significant issues due to the use of acoustic medium as a method of communication. Therefore, designing an efficient underwater protocol that make efficient use of available battery resources and provides reliability in unreliable acoustic environment is a challenging task. In this paper, we therefore present a distance based reliable and energy efficient routing protocol (DREE). The contribution in this routing protocol is twofold 1) DREE actually takes in to account physical distance unlike similar protocol R-ERP ²R where physical distance has not been utilized 2) DREE utilizes Fuzzy logic based link Quality Estimator (F-LQE) which has not been put on the test before in underwater networks. Moreover, DREE extends network lifetime not only by providing energy balancing but by reducing number of transmissions required to deliver a packet successfully. Experiments performed in NS2 simulator prove that DREE contributes to improve results in comparison with R-ERP ²R which is the similar and only distance based reliable protocol present in literature and well known depth based routing protocol DBR
    corecore