538 research outputs found

    Advanced data structures for the interpretation of image and cartographic data in geo-based information systems

    Get PDF
    A growing need to usse geographic information systems (GIS) to improve the flexibility and overall performance of very large, heterogeneous data bases was examined. The Vaster structure and the Topological Grid structure were compared to test whether such hybrid structures represent an improvement in performance. The use of artificial intelligence in a geographic/earth sciences data base context is being explored. The architecture of the Knowledge Based GIS (KBGIS) has a dual object/spatial data base and a three tier hierarchial search subsystem. Quadtree Spatial Spectra (QTSS) are derived, based on the quadtree data structure, to generate and represent spatial distribution information for large volumes of spatial data

    Symbolic and Deep Learning Based Data Representation Methods for Activity Recognition and Image Understanding at Pixel Level

    Get PDF
    Efficient representation of large amount of data particularly images and video helps in the analysis, processing and overall understanding of the data. In this work, we present two frameworks that encapsulate the information present in such data. At first, we present an automated symbolic framework to recognize particular activities in real time from videos. The framework uses regular expressions for symbolically representing (possibly infinite) sets of motion characteristics obtained from a video. It is a uniform framework that handles trajectory-based and periodic articulated activities and provides polynomial time graph algorithms for fast recognition. The regular expressions representing motion characteristics can either be provided manually or learnt automatically from positive and negative examples of strings (that describe dynamic behavior) using offline automata learning frameworks. Confidence measures are associated with recognitions using Levenshtein distance between a string representing a motion signature and the regular expression describing an activity. We have used our framework to recognize trajectory-based activities like vehicle turns (U-turns, left and right turns, and K-turns), vehicle start and stop, person running and walking, and periodic articulated activities like digging, waving, boxing, and clapping in videos from the VIRAT public dataset, the KTH dataset, and a set of videos obtained from YouTube. Next, we present a core sampling framework that is able to use activation maps from several layers of a Convolutional Neural Network (CNN) as features to another neural network using transfer learning to provide an understanding of an input image. The intermediate map responses of a Convolutional Neural Network (CNN) contain information about an image that can be used to extract contextual knowledge about it. Our framework creates a representation that combines features from the test data and the contextual knowledge gained from the responses of a pretrained network, processes it and feeds it to a separate Deep Belief Network. We use this representation to extract more information from an image at the pixel level, hence gaining understanding of the whole image. We experimentally demonstrate the usefulness of our framework using a pretrained VGG-16 model to perform segmentation on the BAERI dataset of Synthetic Aperture Radar (SAR) imagery and the CAMVID dataset. Using this framework, we also reconstruct images by removing noise from noisy character images. The reconstructed images are encoded using Quadtrees. Quadtrees can be an efficient representation in learning from sparse features. When we are dealing with handwritten character images, they are quite susceptible to noise. Hence, preprocessing stages to make the raw data cleaner can improve the efficacy of their use. We improve upon the efficiency of probabilistic quadtrees by using a pixel level classifier to extract the character pixels and remove noise from the images. The pixel level denoiser uses a pretrained CNN trained on a large image dataset and uses transfer learning to aid the reconstruction of characters. In this work, we primarily deal with classification of noisy characters and create the noisy versions of handwritten Bangla Numeral and Basic Character datasets and use them and the Noisy MNIST dataset to demonstrate the usefulness of our approach

    Efficient geographic information systems: Data structures, Boolean operations and concurrency control

    Get PDF
    Geographic Information Systems (GIS) are crucial to the ability of govern mental agencies and business to record, manage and analyze geographic data efficiently. They provide methods of analysis and simulation on geographic data that were previously infeasible using traditional hardcopy maps. Creation of realistic 3-D sceneries by overlaying satellite imagery over digital elevation models (DEM) was not possible using paper maps. Determination of suitable areas for construction that would have the fewest environmental impacts once required manual tracing of different map sets on mylar sheets; now it can be done in real time by GIS. Geographic information processing has significant space and time require ments. This thesis concentrates on techniques which can make existing GIS more efficient by considering these issues: Data Structure, Boolean Operations on Geographic Data, Concurrency Control. Geographic data span multiple dimensions and consist of geometric shapes such as points, lines, and areas, which cannot be efficiently handled using a traditional one-dimensional data structure. We therefore first survey spatial data structures for geographic data and then show how a spatial data structure called an R-tree can be used to augment the performance of many existing GIS. Boolean operations on geographic data are fundamental to the spatial anal ysis common in geographic data processing. They allow the user to analyze geographic data by using operators such as AND, OR, NOT on geographic ob jects. An example of a boolean operation query would be, Find all regions that have low elevation AND soil type clay. Boolean operations require signif icant time to process. We present a generalized solution that could significantly improve the time performance of evaluating complex boolean operation queries. Concurrency control on spatial data structures for geographic data processing is becoming more critical as the size and resolution of geographic databases increase. We present algorithms to enable concurrent access to R-tree spatial data structures so that efficient sharing of geographic data can occur in a multi user GIS environment

    Improved Fractal Image Compression: Centered BFT with Quadtrees

    Get PDF
    Computer Scienc

    Linear time distance transforms for quadtrees

    Full text link
    Linear time algorithms are given for computing the chessboard distance transform for both pointer-based and linear quadtree representations. Comparisons between algorithmic styles for the two representations are made. Both versions of the algorithm consist of a pair of tree traversals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29144/1/0000186.pd
    corecore