4,553 research outputs found

    Reconstructing Trees from Subtree Weights

    Full text link
    The tree-metric theorem provides a necessary and sufficient condition for a dissimilarity matrix to be a tree metric, and has served as the foundation for numerous distance-based reconstruction methods in phylogenetics. Our main result is an extension of the tree-metric theorem to more general dissimilarity maps. In particular, we show that a tree with n leaves is reconstructible from the weights of the m-leaf subtrees provided that n \geq 2m-1

    Searching for Realizations of Finite Metric Spaces in Tight Spans

    Full text link
    An important problem that commonly arises in areas such as internet traffic-flow analysis, phylogenetics and electrical circuit design, is to find a representation of any given metric DD on a finite set by an edge-weighted graph, such that the total edge length of the graph is minimum over all such graphs. Such a graph is called an optimal realization and finding such realizations is known to be NP-hard. Recently Varone presented a heuristic greedy algorithm for computing optimal realizations. Here we present an alternative heuristic that exploits the relationship between realizations of the metric DD and its so-called tight span TDT_D. The tight span TDT_D is a canonical polytopal complex that can be associated to DD, and our approach explores parts of TDT_D for realizations in a way that is similar to the classical simplex algorithm. We also provide computational results illustrating the performance of our approach for different types of metrics, including l1l_1-distances and two-decomposable metrics for which it is provably possible to find optimal realizations in their tight spans.Comment: 20 pages, 3 figure

    Binary Independent Component Analysis with OR Mixtures

    Full text link
    Independent component analysis (ICA) is a computational method for separating a multivariate signal into subcomponents assuming the mutual statistical independence of the non-Gaussian source signals. The classical Independent Components Analysis (ICA) framework usually assumes linear combinations of independent sources over the field of realvalued numbers R. In this paper, we investigate binary ICA for OR mixtures (bICA), which can find applications in many domains including medical diagnosis, multi-cluster assignment, Internet tomography and network resource management. We prove that bICA is uniquely identifiable under the disjunctive generation model, and propose a deterministic iterative algorithm to determine the distribution of the latent random variables and the mixing matrix. The inverse problem concerning inferring the values of latent variables are also considered along with noisy measurements. We conduct an extensive simulation study to verify the effectiveness of the propose algorithm and present examples of real-world applications where bICA can be applied.Comment: Manuscript submitted to IEEE Transactions on Signal Processin

    Topology Discovery of Sparse Random Graphs With Few Participants

    Get PDF
    We consider the task of topology discovery of sparse random graphs using end-to-end random measurements (e.g., delay) between a subset of nodes, referred to as the participants. The rest of the nodes are hidden, and do not provide any information for topology discovery. We consider topology discovery under two routing models: (a) the participants exchange messages along the shortest paths and obtain end-to-end measurements, and (b) additionally, the participants exchange messages along the second shortest path. For scenario (a), our proposed algorithm results in a sub-linear edit-distance guarantee using a sub-linear number of uniformly selected participants. For scenario (b), we obtain a much stronger result, and show that we can achieve consistent reconstruction when a sub-linear number of uniformly selected nodes participate. This implies that accurate discovery of sparse random graphs is tractable using an extremely small number of participants. We finally obtain a lower bound on the number of participants required by any algorithm to reconstruct the original random graph up to a given edit distance. We also demonstrate that while consistent discovery is tractable for sparse random graphs using a small number of participants, in general, there are graphs which cannot be discovered by any algorithm even with a significant number of participants, and with the availability of end-to-end information along all the paths between the participants.Comment: A shorter version appears in ACM SIGMETRICS 2011. This version is scheduled to appear in J. on Random Structures and Algorithm

    Photonic Entanglement for Fundamental Tests and Quantum Communication

    Full text link
    Entanglement is at the heart of fundamental tests of quantum mechanics like tests of Bell-inequalities and, as discovered lately, of quantum computation and communication. Their technological advance made entangled photons play an outstanding role in entanglement physics. We give a generalized concept of qubit entanglement and review the state of the art of photonic experiments.Comment: 54 pages, 33 figures. Review article submitted to QIC (Rinton

    Deconvolution by simulation

    Full text link
    Given samples (x_1,...,x_m) and (z_1,...,z_n) which we believe are independent realizations of random variables X and Z respectively, where we further believe that Z=X+Y with Y independent of X, the problem is to estimate the distribution of Y. We present a new method for doing this, involving simulation. Experiments suggest that the method provides useful estimates.Comment: Published at http://dx.doi.org/10.1214/074921707000000021 in the IMS Lecture Notes Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Local Tomography of Large Networks under the Low-Observability Regime

    Full text link
    This article studies the problem of reconstructing the topology of a network of interacting agents via observations of the state-evolution of the agents. We focus on the large-scale network setting with the additional constraint of partialpartial observations, where only a small fraction of the agents can be feasibly observed. The goal is to infer the underlying subnetwork of interactions and we refer to this problem as locallocal tomographytomography. In order to study the large-scale setting, we adopt a proper stochastic formulation where the unobserved part of the network is modeled as an Erd\"{o}s-R\'enyi random graph, while the observable subnetwork is left arbitrary. The main result of this work is establishing that, under this setting, local tomography is actually possible with high probability, provided that certain conditions on the network model are met (such as stability and symmetry of the network combination matrix). Remarkably, such conclusion is established under the lowlow-observabilityobservability regimeregime, where the cardinality of the observable subnetwork is fixed, while the size of the overall network scales to infinity.Comment: To appear in IEEE Transactions on Information Theor
    • …
    corecore