748 research outputs found

    A comparison of terrestrial laser scanning and structure-from-motion photogrammetry as methods for digital outcrop acquisition

    Get PDF
    Terrestrial laser scanning (TLS) has been used extensively in Earth Science for acquisition of digital outcrop data over the past decade. Structure-from-­motion (SfM) photogrammetry has recently emerged as an alternative and competing technology. The real-world performance of these technologies for ground-based digital outcrop acquisition is assessed using outcrops from North East England and the United Arab Emirates. Both TLS and SfM are via­ble methods, although no single technology is universally best suited to all situations. There are a range of practical considerations and operating conditions where each method has clear advantages. In comparison to TLS, SfM benefits from being lighter, more compact, cheaper, more easily replaced and repaired, with lower power requirements. TLS in comparison to SfM provides intrinsically validated data and more robust data acquisition in a wide range of operating conditions. Data post-processing is also swifter. The SfM data sets were found to contain systematic inaccuracies when compared to their TLS counterparts. These inaccuracies are related to the triangulation approach of the SfM, which is distinct from the time-of-flight principle employed by TLS. An elaborate approach is required for SfM to produce comparable results to TLS under most circumstances

    Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data

    Get PDF
    We have studied the possibility of calibrating airborne laser scanning (ALS) intensity data, using land targets typically available in urban areas. For this purpose, a test area around Espoonlahti Harbor, Espoo, Finland, for which a long time series of ALS campaigns is available, was selected. Different target samples (beach sand, concrete, asphalt, different types of gravel) were collected and measured in the laboratory. Using tarps, which have certain backscattering properties, the natural samples were calibrated and studied, taking into account the atmospheric effect, incidence angle and flying height. Using data from different flights and altitudes, a time series for the natural samples was generated. Studying the stability of the samples, we could obtain information on the most ideal types of natural targets for ALS radiometric calibration. Using the selected natural samples as reference, the ALS points of typical land targets were calibrated again and examined. Results showed the need for more accurate ground reference data, before using natural samples in ALS intensity data calibration. Also, the NIR camera-based field system was used for collecting ground reference data. This system proved to be a good means for collecting in situ reference data, especially for targets with inhomogeneous surface reflection properties

    Photogrammetric techniques for across-scale soil erosion assessment: Developing methods to integrate multi-temporal high resolution topography data at field plots

    Get PDF
    Soil erosion is a complex geomorphological process with varying influences of different impacts at different spatio-temporal scales. To date, measurement of soil erosion is predominantly realisable at specific scales, thereby detecting separate processes, e.g. interrill erosion contrary to rill erosion. It is difficult to survey soil surface changes at larger areal coverage such as field scale with high spatial resolution. Either net changes at the system outlet or remaining traces after the erosional event are usually measured. Thus, either quasi-point measurements are extrapolated to the corresponding area without knowing the actual sediment source as well as sediment storage behaviour on the plot or erosion rates are estimated disrupting the area of investigation during the data acquisition impeding multi-temporal assessment. Furthermore, established methods of soil erosion detection and quantification are typically only reliable for large event magnitudes, very labour and time intense, or inflexible. To better observe soil erosion processes at field scale and under natural conditions, the development of a method is necessary, which identifies and quantifies sediment sources and sinks at the hillslope with high spatial resolution and captures single precipitation events as well as allows for longer observation periods. Therefore, an approach is introduced, which measures soil surface changes for multi-spatio-temporal scales without disturbing the area of interest. Recent advances regarding techniques to capture high resolution topography (HiRT) data led to several promising tools for soil erosion measurement with corresponding advantages but also disadvantages. The necessity exists to evaluate those methods because they have been rarely utilised in soil surface studies. On the one hand, there is terrestrial laser scanning (TLS), which comprises high error reliability and retrieves 3D information directly. And on the other hand, there is unmanned aerial vehicle (UAV) technology in combination with structure from motion (SfM) algorithms resulting in UAV photogrammetry, which is very flexible in the field and depicts a beneficial perspective. Evaluation of the TLS feasibility reveals that this method implies a systematic error that is distance-related and temporal constant for the investigated device and can be corrected transferring calibration values retrieved from an estimated lookup table. However, TLS still reaches its application limits quickly due to an unfavourable (almost horizontal) scanning view at the soil surface resulting in a fast decrease of point density and increase of noise with increasing distance from the device. UAV photogrammetry allows for a better perspective (birds-eye view) onto the area of interest, but possesses more complex error behaviour, especially in regard to the systematic error of a DEM dome, which depends on the method for 3D reconstruction from 2D images (i.e. options for additional implementation of observations) and on the image network configuration (i.e. parallel-axes and control point configuration). Therefore, a procedure is developed that enables flexible usage of different cameras and software tools without the need of additional information or specific camera orientations and yet avoiding this dome error. Furthermore, the accuracy potential of UAV photogrammetry describing rough soil surfaces is assessed because so far corresponding data is missing. Both HiRT methods are used for multi-temporal measurement of soil erosion processes resulting in surface changes of low magnitudes, i.e. rill and especially interrill erosion. Thus, a reference with high accuracy and stability is a requirement. A local reference system with sub-cm and at its best 1 mm accuracy is setup and confirmed by control surveys. TLS and UAV photogrammetry data registration with these targets ensures that errors due to referencing are of minimal impact. Analysis of the multi-temporal performance of both HiRT methods affirms TLS to be suitable for the detection of erosion forms of larger magnitudes because of a level of detection (LoD) of 1.5 cm. UAV photogrammetry enables the quantification of even lower magnitude changes (LoD of 1 cm) and a reliable observation of the change of surface roughness, which is important for runoff processes, at field plots due to high spatial resolution (1 cm²). Synergetic data fusion as a subsequent post-processing step is necessary to exploit the advantages of both HiRT methods and potentially further increase the LoD. The unprecedented high level of information entails the need for automatic geomorphic feature extraction due to the large amount of novel content. Therefore, a method is developed, which allows for accurate rill extraction and rill parameter calculation with high resolution enabling new perspectives onto rill erosion that has not been possible before due to labour and area access limits. Erosion volume and cross sections are calculated for each rill revealing a dominant rill deepening. Furthermore, rill shifting in dependence of the rill orientation towards the dominant wind direction is revealed. Two field plots are installed at erosion prone positions in the Mediterranean (1,000 m²) and in the European loess belt (600 m²) to ensure the detection of surface changes, permitting the evaluation of the feasibility, potential and limits of TLS and UAV photogrammetry in soil erosion studies. Observations are made regarding sediment connectivity at the hillslope scale. Both HiRT methods enable the identification of local sediment sources and sinks, but still exhibiting some degree of uncertainty due to the comparable high LoD in regard to laminar accumulation and interrill erosion processes. At both field sites wheel tracks and erosion rills increase hydrological and sedimentological connectivity. However, at the Mediterranean field plot especially dis-connectivity is obvious. At the European loess belt case study a triggering event could be captured, which led to high erosion rates due to high soil moisture contents and yet further erosion increase due to rill amplification after rill incision. Estimated soil erosion rates range between 2.6 tha-1 and 121.5 tha-1 for single precipitation events and illustrate a large variability due to very different site specifications, although both case studies are located in fragile landscapes. However, the susceptibility to soil erosion has different primary causes, i.e. torrential precipitation at the Mediterranean site and high soil erodibility at the European loess belt site. The future capability of the HiRT methods is their potential to be applicable at yet larger scales. Hence, investigations of the importance of gullys for sediment connectivity between hillslopes and channels are possible as well as the possible explanation of different erosion rates observed at hillslope and at catchment scales because local sediment sink and sources can be quantified. In addition, HiRT data can be a great tool for calibrating, validating and enhancing soil erosion models due to the unprecedented level of detail and the flexible multi-spatio-temporal application

    Automatic Retrieval of Skeletal Structures of Trees from Terrestrial Laser Scanner Data

    Get PDF
    Research on forest ecosystems receives high attention, especially nowadays with regard to sustainable management of renewable resources and the climate change. In particular, accurate information on the 3D structure of a tree is important for forest science and bioclimatology, but also in the scope of commercial applications. Conventional methods to measure geometric plant features are labor- and time-intensive. For detailed analysis, trees have to be cut down, which is often undesirable. Here, Terrestrial Laser Scanning (TLS) provides a particularly attractive tool because of its contactless measurement technique. The object geometry is reproduced as a 3D point cloud. The objective of this thesis is the automatic retrieval of the spatial structure of trees from TLS data. We focus on forest scenes with comparably high stand density and with many occlusions resulting from it. The varying level of detail of TLS data poses a big challenge. We present two fully automatic methods to obtain skeletal structures from scanned trees that have complementary properties. First, we explain a method that retrieves the entire tree skeleton from 3D data of co-registered scans. The branching structure is obtained from a voxel space representation by searching paths from branch tips to the trunk. The trunk is determined in advance from the 3D points. The skeleton of a tree is generated as a 3D line graph. Besides 3D coordinates and range, a scan provides 2D indices from the intensity image for each measurement. This is exploited in the second method that processes individual scans. Furthermore, we introduce a novel concept to manage TLS data that facilitated the researchwork. Initially, the range image is segmented into connected components. We describe a procedure to retrieve the boundary of a component that is capable of tracing inner depth discontinuities. A 2D skeleton is generated from the boundary information and used to decompose the component into sub components. A Principal Curve is computed from the 3D point set that is associated with a sub component. The skeletal structure of a connected component is summarized as a set of polylines. Objective evaluation of the results remains an open problem because the task itself is ill-defined: There exists no clear definition of what the true skeleton should be w.r.t. a given point set. Consequently, we are not able to assess the correctness of the methods quantitatively, but have to rely on visual assessment of results and provide a thorough discussion of the particularities of both methods. We present experiment results of both methods. The first method efficiently retrieves full skeletons of trees, which approximate the branching structure. The level of detail is mainly governed by the voxel space and therefore, smaller branches are reproduced inadequately. The second method retrieves partial skeletons of a tree with high reproduction accuracy. The method is sensitive to noise in the boundary, but the results are very promising. There are plenty of possibilities to enhance the method’s robustness. The combination of the strengths of both presented methods needs to be investigated further and may lead to a robust way to obtain complete tree skeletons from TLS data automatically.Die Erforschung des ÖkosystemsWald spielt gerade heutzutage im Hinblick auf den nachhaltigen Umgang mit nachwachsenden Rohstoffen und den Klimawandel eine große Rolle. Insbesondere die exakte Beschreibung der dreidimensionalen Struktur eines Baumes ist wichtig für die Forstwissenschaften und Bioklimatologie, aber auch im Rahmen kommerzieller Anwendungen. Die konventionellen Methoden um geometrische Pflanzenmerkmale zu messen sind arbeitsintensiv und zeitaufwändig. Für eine genaue Analyse müssen Bäume gefällt werden, was oft unerwünscht ist. Hierbei bietet sich das Terrestrische Laserscanning (TLS) als besonders attraktives Werkzeug aufgrund seines kontaktlosen Messprinzips an. Die Objektgeometrie wird als 3D-Punktwolke wiedergegeben. Basierend darauf ist das Ziel der Arbeit die automatische Bestimmung der räumlichen Baumstruktur aus TLS-Daten. Der Fokus liegt dabei auf Waldszenen mit vergleichsweise hoher Bestandesdichte und mit zahlreichen daraus resultierenden Verdeckungen. Die Auswertung dieser TLS-Daten, die einen unterschiedlichen Grad an Detailreichtum aufweisen, stellt eine große Herausforderung dar. Zwei vollautomatische Methoden zur Generierung von Skelettstrukturen von gescannten Bäumen, welche komplementäre Eigenschaften besitzen, werden vorgestellt. Bei der ersten Methode wird das Gesamtskelett eines Baumes aus 3D-Daten von registrierten Scans bestimmt. Die Aststruktur wird von einer Voxelraum-Repräsentation abgeleitet indem Pfade von Astspitzen zum Stamm gesucht werden. Der Stamm wird im Voraus aus den 3D-Punkten rekonstruiert. Das Baumskelett wird als 3D-Liniengraph erzeugt. Für jeden gemessenen Punkt stellt ein Scan neben 3D-Koordinaten und Distanzwerten auch 2D-Indizes zur Verfügung, die sich aus dem Intensitätsbild ergeben. Bei der zweiten Methode, die auf Einzelscans arbeitet, wird dies ausgenutzt. Außerdem wird ein neuartiges Konzept zum Management von TLS-Daten beschrieben, welches die Forschungsarbeit erleichtert hat. Zunächst wird das Tiefenbild in Komponenten aufgeteilt. Es wird eine Prozedur zur Bestimmung von Komponentenkonturen vorgestellt, die in der Lage ist innere Tiefendiskontinuitäten zu verfolgen. Von der Konturinformation wird ein 2D-Skelett generiert, welches benutzt wird um die Komponente in Teilkomponenten zu zerlegen. Von der 3D-Punktmenge, die mit einer Teilkomponente assoziiert ist, wird eine Principal Curve berechnet. Die Skelettstruktur einer Komponente im Tiefenbild wird als Menge von Polylinien zusammengefasst. Die objektive Evaluation der Resultate stellt weiterhin ein ungelöstes Problem dar, weil die Aufgabe selbst nicht klar erfassbar ist: Es existiert keine eindeutige Definition davon was das wahre Skelett in Bezug auf eine gegebene Punktmenge sein sollte. Die Korrektheit der Methoden kann daher nicht quantitativ beschrieben werden. Aus diesem Grund, können die Ergebnisse nur visuell beurteiltwerden. Weiterhinwerden die Charakteristiken beider Methoden eingehend diskutiert. Es werden Experimentresultate beider Methoden vorgestellt. Die erste Methode bestimmt effizient das Skelett eines Baumes, welches die Aststruktur approximiert. Der Detaillierungsgrad wird hauptsächlich durch den Voxelraum bestimmt, weshalb kleinere Äste nicht angemessen reproduziert werden. Die zweite Methode rekonstruiert Teilskelette eines Baums mit hoher Detailtreue. Die Methode reagiert sensibel auf Rauschen in der Kontur, dennoch sind die Ergebnisse vielversprechend. Es gibt eine Vielzahl von Möglichkeiten die Robustheit der Methode zu verbessern. Die Kombination der Stärken von beiden präsentierten Methoden sollte weiter untersucht werden und kann zu einem robusteren Ansatz führen um vollständige Baumskelette automatisch aus TLS-Daten zu generieren

    Calibration of full-waveform airborne laser scanning data for 3D object segmentation

    Get PDF
    Phd ThesisAirborne Laser Scanning (ALS) is a fully commercial technology, which has seen rapid uptake from the photogrammetry and remote sensing community to classify surface features and enhance automatic object recognition and extraction processes. 3D object segmentation is considered as one of the major research topics in the field of laser scanning for feature recognition and object extraction applications. The demand for automatic segmentation has significantly increased with the emergence of full-waveform (FWF) ALS, which potentially offers an unlimited number of return echoes. FWF has shown potential to improve available segmentation and classification techniques through exploiting the additional physical observables which are provided alongside the standard geometric information. However, use of the FWF additional information is not recommended without prior radiometric calibration, taking into consideration all the parameters affecting the backscattered energy. The main focus of this research is to calibrate the additional information from FWF to develop the potential of point clouds for segmentation algorithms. Echo amplitude normalisation as a function of local incidence angle was identified as a particularly critical aspect, and a novel echo amplitude normalisation approach, termed the Robust Surface Normal (RSN) method, has been developed. Following the radar equation, a comprehensive radiometric calibration routine is introduced to account for all variables affecting the backscattered laser signal. Thereafter, a segmentation algorithm is developed, which utilises the raw 3D point clouds to estimate the normal for individual echoes based on the RSN method. The segmentation criterion is selected as the normal vector augmented by the calibrated backscatter signals. The developed segmentation routine aims to fully integrate FWF data to improve feature recognition and 3D object segmentation applications. The routine was tested over various feature types from two datasets with different properties to assess its potential. The results are compared to those delivered through utilizing only geometric information, without the additional FWF radiometric information, to assess performance over existing methods. The results approved the potential of the FWF additional observables to improve segmentation algorithms. The new approach was validated against manual segmentation results, revealing a successful automatic implementation and achieving an accuracy of 82%

    Measuring Leaf Water Content with Dual-Wavelength Intensity Data from Terrestrial Laser Scanners

    Get PDF
    Decreased leaf moisture content, typically measured as equivalent water thickness (EWT), is an early signal of tree stress caused by drought, disease, or pest insects. We investigated the use of two terrestrial laser scanners (TLSs) employing different wavelengths for improving the understanding how EWT can be retrieved in a laboratory setting. Two wavelengths were examined for normalizing the effects of varying leaf structure and geometry on the measured intensity. The relationship between laser intensity features, using red (690 nm) and shortwave infrared (1550 nm) wavelengths, and the EWT of individual leaves or groups of needles were determined with and without intensity corrections. To account for wrinkles and curvatures of the leaves and needles, a model describing the relationship between incidence angle and backscattered intensity was applied. Additionally, a reflectance model describing both diffuse and specular reflectance was employed to remove the fraction of specular reflectance from backscattered intensity. A strong correlation (R-2 = 0.93, RMSE = 0.004 g/cm(2)) was found between a normalized ratio of the two wavelengths and the measured EWT of samples. The applied intensity correction methods did not significantly improve the results of the study. The backscattered intensity responded to changes in EWT but more investigations are needed to test the suitability of TLSs to retrieve EWT in a forest environment.Peer reviewe
    • …
    corecore