72,441 research outputs found

    Impartial coloring games

    Full text link
    Coloring games are combinatorial games where the players alternate painting uncolored vertices of a graph one of k>0k > 0 colors. Each different ruleset specifies that game's coloring constraints. This paper investigates six impartial rulesets (five new), derived from previously-studied graph coloring schemes, including proper map coloring, oriented coloring, 2-distance coloring, weak coloring, and sequential coloring. For each, we study the outcome classes for special cases and general computational complexity. In some cases we pay special attention to the Grundy function

    Pseudo-scheduling: A New Approach to the Broadcast Scheduling Problem

    Full text link
    The broadcast scheduling problem asks how a multihop network of broadcast transceivers operating on a shared medium may share the medium in such a way that communication over the entire network is possible. This can be naturally modeled as a graph coloring problem via distance-2 coloring (L(1,1)-labeling, strict scheduling). This coloring is difficult to compute and may require a number of colors quadratic in the graph degree. This paper introduces pseudo-scheduling, a relaxation of distance-2 coloring. Centralized and decentralized algorithms that compute pseudo-schedules with colors linear in the graph degree are given and proved.Comment: 8th International Symposium on Algorithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities (ALGOSENSORS 2012), 13-14 September 2012, Ljubljana, Slovenia. 12 page

    Distance-two coloring of sparse graphs

    Full text link
    Consider a graph G=(V,E)G = (V, E) and, for each vertex vVv \in V, a subset Σ(v)\Sigma(v) of neighbors of vv. A Σ\Sigma-coloring is a coloring of the elements of VV so that vertices appearing together in some Σ(v)\Sigma(v) receive pairwise distinct colors. An obvious lower bound for the minimum number of colors in such a coloring is the maximum size of a set Σ(v)\Sigma(v), denoted by ρ(Σ)\rho(\Sigma). In this paper we study graph classes FF for which there is a function ff, such that for any graph GFG \in F and any Σ\Sigma, there is a Σ\Sigma-coloring using at most f(ρ(Σ))f(\rho(\Sigma)) colors. It is proved that if such a function exists for a class FF, then ff can be taken to be a linear function. It is also shown that such classes are precisely the classes having bounded star chromatic number. We also investigate the list version and the clique version of this problem, and relate the existence of functions bounding those parameters to the recently introduced concepts of classes of bounded expansion and nowhere-dense classes.Comment: 13 pages - revised versio
    corecore