5,173 research outputs found

    Observability of Lattice Graphs

    Full text link
    We consider a graph observability problem: how many edge colors are needed for an unlabeled graph so that an agent, walking from node to node, can uniquely determine its location from just the observed color sequence of the walk? Specifically, let G(n,d) be an edge-colored subgraph of d-dimensional (directed or undirected) lattice of size n^d = n * n * ... * n. We say that G(n,d) is t-observable if an agent can uniquely determine its current position in the graph from the color sequence of any t-dimensional walk, where the dimension is the number of different directions spanned by the edges of the walk. A walk in an undirected lattice G(n,d) has dimension between 1 and d, but a directed walk can have dimension between 1 and 2d because of two different orientations for each axis. We derive bounds on the number of colors needed for t-observability. Our main result is that Theta(n^(d/t)) colors are both necessary and sufficient for t-observability of G(n,d), where d is considered a constant. This shows an interesting dependence of graph observability on the ratio between the dimension of the lattice and that of the walk. In particular, the number of colors for full-dimensional walks is Theta(n^(1/2)) in the directed case, and Theta(n) in the undirected case, independent of the lattice dimension. All of our results extend easily to non-square lattices: given a lattice graph of size N = n_1 * n_2 * ... * n_d, the number of colors for t-observability is Theta (N^(1/t))

    On Packing Colorings of Distance Graphs

    Full text link
    The {\em packing chromatic number} χρ(G)\chi_{\rho}(G) of a graph GG is the least integer kk for which there exists a mapping ff from V(G)V(G) to {1,2,,k}\{1,2,\ldots ,k\} such that any two vertices of color ii are at distance at least i+1i+1. This paper studies the packing chromatic number of infinite distance graphs G(Z,D)G(\mathbb{Z},D), i.e. graphs with the set Z\mathbb{Z} of integers as vertex set, with two distinct vertices i,jZi,j\in \mathbb{Z} being adjacent if and only if ijD|i-j|\in D. We present lower and upper bounds for χρ(G(Z,D))\chi_{\rho}(G(\mathbb{Z},D)), showing that for finite DD, the packing chromatic number is finite. Our main result concerns distance graphs with D={1,t}D=\{1,t\} for which we prove some upper bounds on their packing chromatic numbers, the smaller ones being for t447t\geq 447: χρ(G(Z,{1,t}))40\chi_{\rho}(G(\mathbb{Z},\{1,t\}))\leq 40 if tt is odd and χρ(G(Z,{1,t}))81\chi_{\rho}(G(\mathbb{Z},\{1,t\}))\leq 81 if tt is even

    Kac-Moody Symmetries of Critical Ground States

    Full text link
    The symmetries of critical ground states of two-dimensional lattice models are investigated. We show how mapping a critical ground state to a model of a rough interface can be used to identify the chiral symmetry algebra of the conformal field theory that describes its scaling limit. This is demonstrated in the case of the six-vertex model, the three-coloring model on the honeycomb lattice, and the four-coloring model on the square lattice. These models are critical and they are described in the continuum by conformal field theories whose symmetry algebras are the su(2)k=1su(2)_{k=1}, su(3)k=1su(3)_{k=1}, and the su(4)k=1su(4)_{k=1} Kac-Moody algebra, respectively. Our approach is based on the Frenkel--Kac--Segal vertex operator construction of level one Kac--Moody algebras.Comment: 42 pages, RevTex, 14 ps figures, Submitted to Nucl. Phys. B. [FS
    corecore