96,907 research outputs found

    Analysing acoustic model changes for active learning in automatic speech recognition

    Get PDF
    In active learning for Automatic Speech Recognition (ASR), a portion of data is automatically selected for manual transcription. The objective is to improve ASR performance with retrained acoustic models. The standard approaches are based on confidence of individual sentences. In this study, we look into an alternative view on transcript label quality, in which Gaussian Supervector Distance (GSD) is used as a criterion for data selection. GSD is a metric which quantifies how the model was changed during its adaptation. By using an automatic speech recognition transcript derived from an out-of-domain acoustic model, unsupervised adaptation was conducted and GSD was computed. The adapted model is then applied to an audio book transcription task. It is found that GSD provide hints for predicting data transcription quality. A preliminary attempt in active learning proves the effectiveness of GSD selection criterion over random selection, shedding light on its prospective use

    Active Multi-Kernel Domain Adaptation for Hyperspectral Image Classification

    Full text link
    Recent years have witnessed the quick progress of the hyperspectral images (HSI) classification. Most of existing studies either heavily rely on the expensive label information using the supervised learning or can hardly exploit the discriminative information borrowed from related domains. To address this issues, in this paper we show a novel framework addressing HSI classification based on the domain adaptation (DA) with active learning (AL). The main idea of our method is to retrain the multi-kernel classifier by utilizing the available labeled samples from source domain, and adding minimum number of the most informative samples with active queries in the target domain. The proposed method adaptively combines multiple kernels, forming a DA classifier that minimizes the bias between the source and target domains. Further equipped with the nested actively updating process, it sequentially expands the training set and gradually converges to a satisfying level of classification performance. We study this active adaptation framework with the Margin Sampling (MS) strategy in the HSI classification task. Our experimental results on two popular HSI datasets demonstrate its effectiveness

    Self-adjustable domain adaptation in personalized ECG monitoring integrated with IR-UWB radar

    Get PDF
    To enhance electrocardiogram (ECG) monitoring systems in personalized detections, deep neural networks (DNNs) are applied to overcome individual differences by periodical retraining. As introduced previously [4], DNNs relieve individual differences by fusing ECG with impulse radio ultra-wide band (IR-UWB) radar. However, such DNN-based ECG monitoring system tends to overfit into personal small datasets and is difficult to generalize to newly collected unlabeled data. This paper proposes a self-adjustable domain adaptation (SADA) strategy to prevent from overfitting and exploit unlabeled data. Firstly, this paper enlarges the database of ECG and radar data with actual records acquired from 28 testers and expanded by the data augmentation. Secondly, to utilize unlabeled data, SADA combines self organizing maps with the transfer learning in predicting labels. Thirdly, SADA integrates the one-class classification with domain adaptation algorithms to reduce overfitting. Based on our enlarged database and standard databases, a large dataset of 73200 records and a small one of 1849 records are built up to verify our proposal. Results show SADA\u27s effectiveness in predicting labels and increments in the sensitivity of DNNs by 14.4% compared with existing domain adaptation algorithms

    Learning Sampling Policies for Domain Adaptation

    Full text link
    We address the problem of semi-supervised domain adaptation of classification algorithms through deep Q-learning. The core idea is to consider the predictions of a source domain network on target domain data as noisy labels, and learn a policy to sample from this data so as to maximize classification accuracy on a small annotated reward partition of the target domain. Our experiments show that learned sampling policies construct labeled sets that improve accuracies of visual classifiers over baselines

    Transfer Learning in Astronomy: A New Machine-Learning Paradigm

    Full text link
    The widespread dissemination of machine learning tools in science, particularly in astronomy, has revealed the limitation of working with simple single-task scenarios in which any task in need of a predictive model is looked in isolation, and ignores the existence of other similar tasks. In contrast, a new generation of techniques is emerging where predictive models can take advantage of previous experience to leverage information from similar tasks. The new emerging area is referred to as transfer learning. In this paper, I briefly describe the motivation behind the use of transfer learning techniques, and explain how such techniques can be used to solve popular problems in astronomy. As an example, a prevalent problem in astronomy is to estimate the class of an object (e.g., Supernova Ia) using a generation of photometric light-curve datasets where data abounds, but class labels are scarce; such analysis can benefit from spectroscopic data where class labels are known with high confidence, but the data sample is small. Transfer learning provides a robust and practical solution to leverage information from one domain to improve the accuracy of a model built on a different domain. In the example above, transfer learning would look to overcome the difficulty in the compatibility of models between spectroscopic data and photometric data, since data properties such as size, class priors, and underlying distributions, are all expected to be significantly different

    Sim2Real View Invariant Visual Servoing by Recurrent Control

    Full text link
    Humans are remarkably proficient at controlling their limbs and tools from a wide range of viewpoints and angles, even in the presence of optical distortions. In robotics, this ability is referred to as visual servoing: moving a tool or end-point to a desired location using primarily visual feedback. In this paper, we study how viewpoint-invariant visual servoing skills can be learned automatically in a robotic manipulation scenario. To this end, we train a deep recurrent controller that can automatically determine which actions move the end-point of a robotic arm to a desired object. The problem that must be solved by this controller is fundamentally ambiguous: under severe variation in viewpoint, it may be impossible to determine the actions in a single feedforward operation. Instead, our visual servoing system must use its memory of past movements to understand how the actions affect the robot motion from the current viewpoint, correcting mistakes and gradually moving closer to the target. This ability is in stark contrast to most visual servoing methods, which either assume known dynamics or require a calibration phase. We show how we can learn this recurrent controller using simulated data and a reinforcement learning objective. We then describe how the resulting model can be transferred to a real-world robot by disentangling perception from control and only adapting the visual layers. The adapted model can servo to previously unseen objects from novel viewpoints on a real-world Kuka IIWA robotic arm. For supplementary videos, see: https://fsadeghi.github.io/Sim2RealViewInvariantServoComment: Supplementary video: https://fsadeghi.github.io/Sim2RealViewInvariantServ

    Mid-Level Visual Representations Improve Generalization and Sample Efficiency for Learning Visuomotor Policies

    Full text link
    How much does having visual priors about the world (e.g. the fact that the world is 3D) assist in learning to perform downstream motor tasks (e.g. delivering a package)? We study this question by integrating a generic perceptual skill set (e.g. a distance estimator, an edge detector, etc.) within a reinforcement learning framework--see Figure 1. This skill set (hereafter mid-level perception) provides the policy with a more processed state of the world compared to raw images. We find that using a mid-level perception confers significant advantages over training end-to-end from scratch (i.e. not leveraging priors) in navigation-oriented tasks. Agents are able to generalize to situations where the from-scratch approach fails and training becomes significantly more sample efficient. However, we show that realizing these gains requires careful selection of the mid-level perceptual skills. Therefore, we refine our findings into an efficient max-coverage feature set that can be adopted in lieu of raw images. We perform our study in completely separate buildings for training and testing and compare against visually blind baseline policies and state-of-the-art feature learning methods.Comment: See project website, demos, and code at http://perceptual.acto

    Domain Adaptations for Computer Vision Applications

    Full text link
    A basic assumption of statistical learning theory is that train and test data are drawn from the same underlying distribution. Unfortunately, this assumption doesn't hold in many applications. Instead, ample labeled data might exist in a particular `source' domain while inference is needed in another, `target' domain. Domain adaptation methods leverage labeled data from both domains to improve classification on unseen data in the target domain. In this work we survey domain transfer learning methods for various application domains with focus on recent work in Computer Vision

    When can Multi-Site Datasets be Pooled for Regression? Hypothesis Tests, â„“2\ell_2-consistency and Neuroscience Applications

    Full text link
    Many studies in biomedical and health sciences involve small sample sizes due to logistic or financial constraints. Often, identifying weak (but scientifically interesting) associations between a set of predictors and a response necessitates pooling datasets from multiple diverse labs or groups. While there is a rich literature in statistical machine learning to address distributional shifts and inference in multi-site datasets, it is less clear when{\it when} such pooling is guaranteed to help (and when it does not) -- independent of the inference algorithms we use. In this paper, we present a hypothesis test to answer this question, both for classical and high dimensional linear regression. We precisely identify regimes where pooling datasets across multiple sites is sensible, and how such policy decisions can be made via simple checks executable on each site before any data transfer ever happens. With a focus on Alzheimer's disease studies, we present empirical results showing that in regimes suggested by our analysis, pooling a local dataset with data from an international study improves power.Comment: 34th International Conference on Machine Learnin

    Image Generation From Small Datasets via Batch Statistics Adaptation

    Full text link
    Thanks to the recent development of deep generative models, it is becoming possible to generate high-quality images with both fidelity and diversity. However, the training of such generative models requires a large dataset. To reduce the amount of data required, we propose a new method for transferring prior knowledge of the pre-trained generator, which is trained with a large dataset, to a small dataset in a different domain. Using such prior knowledge, the model can generate images leveraging some common sense that cannot be acquired from a small dataset. In this work, we propose a novel method focusing on the parameters for batch statistics, scale and shift, of the hidden layers in the generator. By training only these parameters in a supervised manner, we achieved stable training of the generator, and our method can generate higher quality images compared to previous methods without collapsing, even when the dataset is small (~100). Our results show that the diversity of the filters acquired in the pre-trained generator is important for the performance on the target domain. Our method makes it possible to add a new class or domain to a pre-trained generator without disturbing the performance on the original domain.Comment: ICCV 201
    • …
    corecore