696 research outputs found

    Oblivious Bounds on the Probability of Boolean Functions

    Full text link
    This paper develops upper and lower bounds for the probability of Boolean functions by treating multiple occurrences of variables as independent and assigning them new individual probabilities. We call this approach dissociation and give an exact characterization of optimal oblivious bounds, i.e. when the new probabilities are chosen independent of the probabilities of all other variables. Our motivation comes from the weighted model counting problem (or, equivalently, the problem of computing the probability of a Boolean function), which is #P-hard in general. By performing several dissociations, one can transform a Boolean formula whose probability is difficult to compute, into one whose probability is easy to compute, and which is guaranteed to provide an upper or lower bound on the probability of the original formula by choosing appropriate probabilities for the dissociated variables. Our new bounds shed light on the connection between previous relaxation-based and model-based approximations and unify them as concrete choices in a larger design space. We also show how our theory allows a standard relational database management system (DBMS) to both upper and lower bound hard probabilistic queries in guaranteed polynomial time.Comment: 34 pages, 14 figures, supersedes: http://arxiv.org/abs/1105.281

    A General Framework for Anytime Approximation in Probabilistic Databases

    Get PDF
    Anytime approximation algorithms that compute the probabilities of queries over probabilistic databases can be of great use to statistical learning tasks. Those approaches have been based so far on either (i) sampling or (ii) branch-and-bound with model-based bounds. We present here a more general branch-and-bound framework that extends the possible bounds by using 'dissociation', which yields tighter bounds.Comment: 3 pages, 2 figures, submitted to StarAI 2018 Worksho

    Approximate Lifted Inference with Probabilistic Databases

    Full text link
    This paper proposes a new approach for approximate evaluation of #P-hard queries with probabilistic databases. In our approach, every query is evaluated entirely in the database engine by evaluating a fixed number of query plans, each providing an upper bound on the true probability, then taking their minimum. We provide an algorithm that takes into account important schema information to enumerate only the minimal necessary plans among all possible plans. Importantly, this algorithm is a strict generalization of all known results of PTIME self-join-free conjunctive queries: A query is safe if and only if our algorithm returns one single plan. We also apply three relational query optimization techniques to evaluate all minimal safe plans very fast. We give a detailed experimental evaluation of our approach and, in the process, provide a new way of thinking about the value of probabilistic methods over non-probabilistic methods for ranking query answers.Comment: 12 pages, 5 figures, pre-print for a paper appearing in VLDB 2015. arXiv admin note: text overlap with arXiv:1310.625

    The Fourth International VLDB Workshop on Management of Uncertain Data

    Get PDF

    Tractability in probabilistic databases

    Full text link
    All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately
    corecore