26 research outputs found

    Dissociated Emergent-Response System and Fine-Processing System in Human Neural Network and a Heuristic Neural Architecture for Autonomous Humanoid Robots

    Get PDF
    The current study investigated the functional connectivity of the primary sensory system with resting state fMRI and applied such knowledge into the design of the neural architecture of autonomous humanoid robots. Correlation and Granger causality analyses were utilized to reveal the functional connectivity patterns. Dissociation was within the primary sensory system, in that the olfactory cortex and the somatosensory cortex were strongly connected to the amygdala whereas the visual cortex and the auditory cortex were strongly connected with the frontal cortex. The posterior cingulate cortex (PCC) and the anterior cingulate cortex (ACC) were found to maintain constant communication with the primary sensory system, the frontal cortex, and the amygdala. Such neural architecture inspired the design of dissociated emergent-response system and fine-processing system in autonomous humanoid robots, with separate processing units and another consolidation center to coordinate the two systems. Such design can help autonomous robots to detect and respond quickly to danger, so as to maintain their sustainability and independence

    Building Blocks for Cognitive Robots: Embodied Simulation and Schemata in a Cognitive Architecture

    Get PDF
    Hemion N. Building Blocks for Cognitive Robots: Embodied Simulation and Schemata in a Cognitive Architecture. Bielefeld: Bielefeld University; 2013.Building robots with the ability to perform general intelligent action is a primary goal of artificial intelligence research. The traditional approach is to study and model fragments of cognition separately, with the hope that it will somehow be possible to integrate the specialist solutions into a functioning whole. However, while individual specialist systems demonstrate proficiency in their respective niche, current integrated systems remain clumsy in their performance. Recent findings in neurobiology and psychology demonstrate that many regions of the brain are involved not only in one but in a variety of cognitive tasks, suggesting that the cognitive architecture of the brain uses generic computations in a distributed network, instead of specialist computations in local modules. Designing the cognitive architecture for a robot based on these findings could lead to more capable integrated systems. In this thesis, theoretical background on the concept of embodied cognition is provided, and fundamental mechanisms of cognition are discussed that are hypothesized across theories. Based on this background, a view of how to connect elements of the different theories is proposed, providing enough detail to allow computational modeling. The view proposes a network of generic building blocks to be the central component of a cognitive architecture. Each building block learns an internal model for its inputs. Given partial inputs or cues, the building blocks can collaboratively restore missing components, providing the basis for embodied simulation, which in theories of embodied cognition is hypothesized to be a central mechanism of cognition and the basis for many cognitive functions. In simulation experiments, it is demonstrated how the building blocks can be autonomously learned by a robot from its sensorimotor experience, and that the mechanism of embodied simulation allows the robot to solve multiple tasks simultaneously. In summary, this thesis investigates how to develop cognitive robots under the paradigm of embodied cognition. It provides a description of a novel cognitive architecture and thoroughly discusses its relation to a broad body of interdisciplinary literature on embodied cognition. This thesis hence promotes the view that the cognitive system houses a network of active elements, which organize the agent's experiences and collaboratively carry out many cognitive functions. On the long run, it will be inevitable to study complete cognitive systems such as the cognitive architecture described in this thesis, instead of only studying small learning systems separately, to answer the question of how to build truly autonomous cognitive robots

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Grounding semantic cognition using computational modelling and network analysis

    Get PDF
    The overarching objective of this thesis is to further the field of grounded semantics using a range of computational and empirical studies. Over the past thirty years, there have been many algorithmic advances in the modelling of semantic cognition. A commonality across these cognitive models is a reliance on hand-engineering “toy-models”. Despite incorporating newer techniques (e.g. Long short-term memory), the model inputs remain unchanged. We argue that the inputs to these traditional semantic models have little resemblance with real human experiences. In this dissertation, we ground our neural network models by training them with real-world visual scenes using naturalistic photographs. Our approach is an alternative to both hand-coded features and embodied raw sensorimotor signals. We conceptually replicate the mutually reinforcing nature of hybrid (feature-based and grounded) representations using silhouettes of concrete concepts as model inputs. We next gradually develop a novel grounded cognitive semantic representation which we call scene2vec, starting with object co-occurrences and then adding emotions and language-based tags. Limitations of our scene-based representation are identified for more abstract concepts (e.g. freedom). We further present a large-scale human semantics study, which reveals small-world semantic network topologies are context-dependent and that scenes are the most dominant cognitive dimension. This finding leads us to conclude that there is no meaning without context. Lastly, scene2vec shows promising human-like context-sensitive stereotypes (e.g. gender role bias), and we explore how such stereotypes are reduced by targeted debiasing. In conclusion, this thesis provides support for a novel computational viewpoint on investigating meaning - scene-based grounded semantics. Future research scaling scene-based semantic models to human-levels through virtual grounding has the potential to unearth new insights into the human mind and concurrently lead to advancements in artificial general intelligence by enabling robots, embodied or otherwise, to acquire and represent meaning directly from the environment

    Proceedings of KogWis 2012. 11th Biannual Conference of the German Cognitive Science Society

    Get PDF
    The German cognitive science conference is an interdisciplinary event where researchers from different disciplines -- mainly from artificial intelligence, cognitive psychology, linguistics, neuroscience, philosophy of mind, and anthropology -- and application areas -- such as eduction, clinical psychology, and human-machine interaction -- bring together different theoretical and methodological perspectives to study the mind. The 11th Biannual Conference of the German Cognitive Science Society took place from September 30 to October 3 2012 at Otto-Friedrich-Universität in Bamberg. The proceedings cover all contributions to this conference, that is, five invited talks, seven invited symposia and two symposia, a satellite symposium, a doctoral symposium, three tutorials, 46 abstracts of talks and 23 poster abstracts

    Graphonomics and your Brain on Art, Creativity and Innovation : Proceedings of the 19th International Graphonomics Conference (IGS 2019 – Your Brain on Art)

    Get PDF
    [Italiano]: “Grafonomia e cervello su arte, creatività e innovazione”. Un forum internazionale per discutere sui recenti progressi nell'interazione tra arti creative, neuroscienze, ingegneria, comunicazione, tecnologia, industria, istruzione, design, applicazioni forensi e mediche. I contributi hanno esaminato lo stato dell'arte, identificando sfide e opportunità, e hanno delineato le possibili linee di sviluppo di questo settore di ricerca. I temi affrontati includono: strategie integrate per la comprensione dei sistemi neurali, affettivi e cognitivi in ambienti realistici e complessi; individualità e differenziazione dal punto di vista neurale e comportamentale; neuroaesthetics (uso delle neuroscienze per spiegare e comprendere le esperienze estetiche a livello neurologico); creatività e innovazione; neuro-ingegneria e arte ispirata dal cervello, creatività e uso di dispositivi di mobile brain-body imaging (MoBI) indossabili; terapia basata su arte creativa; apprendimento informale; formazione; applicazioni forensi. / [English]: “Graphonomics and your brain on art, creativity and innovation”. A single track, international forum for discussion on recent advances at the intersection of the creative arts, neuroscience, engineering, media, technology, industry, education, design, forensics, and medicine. The contributions reviewed the state of the art, identified challenges and opportunities and created a roadmap for the field of graphonomics and your brain on art. The topics addressed include: integrative strategies for understanding neural, affective and cognitive systems in realistic, complex environments; neural and behavioral individuality and variation; neuroaesthetics (the use of neuroscience to explain and understand the aesthetic experiences at the neurological level); creativity and innovation; neuroengineering and brain-inspired art, creative concepts and wearable mobile brain-body imaging (MoBI) designs; creative art therapy; informal learning; education; forensics

    Real-time synthetic primate vision

    Get PDF

    Expectations and expertise in artificial intelligence: specialist views and historical perspectives on conceptualisation, promise, and funding

    Get PDF
    Artificial intelligence’s (AI) distinctiveness as a technoscientific field that imitates the ability to think went through a resurgence of interest post-2010, attracting a flood of scientific and popular expectations as to its utopian or dystopian transformative consequences. This thesis offers observations about the formation and dynamics of expectations based on documentary material from the previous periods of perceived AI hype (1960-1975 and 1980-1990, including in-between periods of perceived dormancy), and 25 interviews with UK-based AI specialists, directly involved with its development, who commented on the issues during the crucial period of uncertainty (2017-2019) and intense negotiation through which AI gained momentum prior to its regulation and relatively stabilised new rounds of long-term investment (2020-2021). This examination applies and contributes to longitudinal studies in the sociology of expectations (SoE) and studies of experience and expertise (SEE) frameworks, proposing a historical sociology of expertise and expectations framework. The research questions, focusing on the interplay between hype mobilisation and governance, are: (1) What is the relationship between AI practical development and the broader expectational environment, in terms of funding and conceptualisation of AI? (2) To what extent does informal and non-developer assessment of expectations influence formal articulations of foresight? (3) What can historical examinations of AI’s conceptual and promissory settings tell about the current rebranding of AI? The following contributions are made: (1) I extend SEE by paying greater attention to the interplay between technoscientific experts and wider collective arenas of discourse amongst non-specialists and showing how AI’s contemporary research cultures are overwhelmingly influenced by the hype environment but also contribute to it. This further highlights the interaction between competing rationales focusing on exploratory, curiosity-driven scientific research against exploitation-oriented strategies at formal and informal levels. (2) I suggest benefits of examining promissory environments in AI and related technoscientific fields longitudinally, treating contemporary expectations as historical products of sociotechnical trajectories through an authoritative historical reading of AI’s shifting conceptualisation and attached expectations as a response to availability of funding and broader national imaginaries. This comes with the benefit of better perceiving technological hype as migrating from social group to social group instead of fading through reductionist cycles of disillusionment; either by rebranding of technical operations, or by the investigation of a given field by non-technical practitioners. It also sensitises to critically examine broader social expectations as factors for shifts in perception about theoretical/basic science research transforming into applied technological fields. Finally, (3) I offer a model for understanding the significance of interplay between conceptualisations, promising, and motivations across groups within competing dynamics of collective and individual expectations and diverse sources of expertise
    corecore