893 research outputs found

    Distinct patterns of functional and effective connectivity between perirhinal cortex and other cortical regions in recognition memory and perceptual discrimination.

    Get PDF
    Traditionally, the medial temporal lobe (MTL) is thought to be dedicated to declarative memory. Recent evidence challenges this view, suggesting that perirhinal cortex (PrC), which interfaces the MTL with the ventral visual pathway, supports highly integrated object representations in recognition memory and perceptual discrimination. Even with comparable representational demands, perceptual and memory tasks differ in numerous task demands and the subjective experience they evoke. Here, we tested whether such differences are reflected in distinct patterns of connectivity between PrC and other cortical regions, including differential involvement of prefrontal control processes. We examined functional magnetic resonance imaging data for closely matched perceptual and recognition memory tasks for faces that engaged right PrC equivalently. Multivariate seed analyses revealed distinct patterns of interactions: Right ventrolateral prefrontal and posterior cingulate cortices exhibited stronger functional connectivity with PrC in recognition memory; fusiform regions were part of the pattern that displayed stronger functional connectivity with PrC in perceptual discrimination. Structural equation modeling revealed distinct patterns of effective connectivity that allowed us to constrain interpretation of these findings. Overall, they demonstrate that, even when MTL structures show similar involvement in recognition memory and perceptual discrimination, differential neural mechanisms are reflected in the interplay between the MTL and other cortical regions

    Interactions between the hippocampus and prefrontal cortex in context-dependent overlapping memory retrieval

    Get PDF
    Activation in the hippocampus (HC) and prefrontal cortex (PFC) is critical to accurately retrieve overlapping sequences. Experiments 1 and 2 tested the hypotheses that activation in and interaction between HC and PFC increases as overlap between sequences increases in a non-spatial task. Experiment 3 tested the hypothesis that theta oscillations are involved in orchestrating interactions between HC and PFC in a spatial task with overlapping elements. In the first two studies, 17 participants (aged 18-34; 11 female) learned sequences consisting of a picture frame, face, and scene. Conditions varied by degree of overlap. Using fMRI, Experiment 1 tested how degree of overlap affected HC and PFC activation. In overlapping sequences, middle and posterior HC were active when predictability of the correct response increased, dorsolateral PFC was active when participants were able to ascertain the correct set of sequences, and ventrolateral PFC was active when inhibition of interfering associations was required. Experiment 2 examined functional connectivity of HC and PFC during disambiguation. Low- and high-overlap conditions were associated with increased connectivity in separate regions at different times indicating that retrieval under the two conditions used different neural networks and strategies. Low-overlap trials were associated with increased connectivity between HC and prefrontal and parietal regions. High-overlap trials showed increased connectivity between lateral PFC and visual areas, indicating that imagery may be necessary for accurate performance. Using EEG recording, Experiment 3 examined theta activity during retrieval of well-learned, overlapping and non-overlapping mazes in 17 participants (aged 18-34, 11 female). Theta activity increased in overlapping mazes during the first of four hallways, suggesting participants were looking ahead to upcoming turns in the maze. Theta activity increased at the beginning and choice point of the third overlapping hallway, possibly in response to interference from the paired, overlapping maze. These studies provide evidence that (1) overlapping associations in non-spatial sequences elicit interactions between hippocampus and lateral prefrontal cortex, (2) increasing the degree of overlap changes the neural processes required to perform the task, and (3) theta power increases in response to increased cognitive demand and maintenance of sequence information needed to differentiate between overlapping spatial routes

    The formation of source memory under distraction

    Get PDF

    Similar or Different? The Role of the Ventrolateral Prefrontal Cortex in Similarity Detection

    Get PDF
    Patients with frontal lobe syndrome can exhibit two types of abnormal behaviour when asked to place a banana and an orange in a single category: some patients categorize them at a concrete level (e.g., “both have peel”), while others continue to look for differences between these objects (e.g., “one is yellow, the other is orange”). These observations raise the question of whether abstraction and similarity detection are distinct processes involved in abstract categorization, and that depend on separate areas of the prefrontal cortex (PFC). We designed an original experimental paradigm for a functional magnetic resonance imaging (fMRI) study involving healthy subjects, confirming the existence of two distinct processes relying on different prefrontal areas, and thus explaining the behavioural dissociation in frontal lesion patients. We showed that: 1) Similarity detection involves the anterior ventrolateral PFC bilaterally with a right-left asymmetry: the right anterior ventrolateral PFC is only engaged in detecting physical similarities; 2) Abstraction per se activates the left dorsolateral PFC

    Representation of faces in perirhinal cortex

    Get PDF
    The prevailing view of medial temporal lobe (MTL) functioning holds that its structures are dedicated to long-term declarative memory. Recent evidence challenges this view, suggesting that perirhinal cortex (PrC), which interfaces the MTL with the ventral visual pathway, supports highly integrated object representations that contribute to both recognition memory and perceptual discrimination. Here, I used functional magnetic resonance imaging to examine PrC activity, as well as its broader functional connectivity, during perceptual and mnemonic tasks involving faces, a stimulus class proposed to rely on integrated representations for discrimination. In Chapter 2, I revealed that PrC involvement was related to task demands that emphasized face individuation. Discrimination under these conditions is proposed to benefit from the uniqueness afforded by highly-integrated stimulus representations. Multivariate partial least squares analyses revealed that PrC, the fusiform face area (FFA), and the amygdala were part of a pattern of regions exhibiting preferential activity for tasks emphasizing stimulus individuation. In Chapter 3, I provided evidence of resting-state connectivity between face-selective aspects of PrC, the FFA, and amygdala. These findings point to a privileged functional relationship between these regions, consistent with task-related co- recruitment revealed in Chapter 2. In addition, the strength of resting-state connectivity was related to behavioral performance on a face discrimination task. These results suggest a mechanism by which PrC may participate in the representation of faces. In Chapter 4, I examined PrC connectivity during task contexts. I provided evidence that distinctions between tasks emphasizing recognition memory and perceptual discrimination demands are better reflected in the connectivity of PrC with other regions in the brain, rather than in the presence or absence of PrC activity. Further, this functional connectivity was related to behavioral performance for the memory task. Together, these findings indicate that mnemonic demands are not the sole arbiter of PrC involvement, counter to the prevailing view of MTL functioning. Instead, they highlight the importance of connectivity-based approaches in elucidating the contributions of PrC, and point to a role of PrC in the representation of faces in a manner that can support memory and perception, and that may apply to other object categories more broadly

    Effects of cue focality on the neural mechanisms of prospective memory: A meta-analysis of neuroimaging studies

    Get PDF
    Remembering to execute pre-defined intentions at the appropriate time in the future is typically referred to as Prospective Memory (PM). Studies of PM showed that distinct cognitive processes underlie the execution of delayed intentions depending on whether the cue associated with such intentions is focal to ongoing activity processing or not (i.e., cue focality). The present activation likelihood estimation (ALE) meta-analysis revealed several differences in brain activity as a function of focality of the PM cue. The retrieval of intention is supported mainly by left anterior prefrontal cortex (Brodmann Area, BA 10) in nonfocal tasks, and by cerebellum and ventral parietal regions in focal tasks. Furthermore, the precuneus showed increased activation during the maintenance phase of intentions compared to the retrieval phase in nonfocal tasks, whereas the inferior parietal lobule showed increased activation during the retrieval of intention compared to maintenance phase in the focal tasks. Finally, the retrieval of intention relies more on the activity in anterior cingulate cortex for nonfocal tasks, and on posterior cingulate cortex for focal tasks. Such focality-related pattern of activations suggests that prospective remembering is mediated mainly by top-down and stimulus-independent processes in nonfocal tasks, whereas by more automatic, bottom-up, processes in focal tasks

    The Target Selective Neural Response — Similarity, Ambiguity, and Learning Effects

    Get PDF
    A network of frontal and parietal brain regions is commonly recruited during tasks that require the deliberate ‘top-down’ control of thought and action. Previously, using simple target detection, we have demonstrated that within this frontoparietal network, the right ventrolateral prefrontal cortex (VLPFC) in particular is sensitive to the presentation of target objects. Here, we use a range of target/non-target morphs to plot the target selective response within distinct frontoparietal sub-regions in greater detail. The increased resolution allows us to examine the extent to which different cognitive factors can predict the blood oxygenation level dependent (BOLD) response to targets. Our results reveal that both probability of positive identification (similarity to target) and proximity to the 50% decision boundary (ambiguity) are significant predictors of BOLD signal change, particularly in the right VLPFC. Furthermore, the profile of target related signal change is not static, with the degree of selectivity increasing as the task becomes familiar. These findings demonstrate that frontoparietal sub-regions are recruited under increased cognitive demand and that when recruited, they adapt, using both fast and slow mechanisms, to selectively respond to those items that are of the most relevance to current intentions

    The effects of prefrontal lesions on working memory performance and theory

    Full text link

    The cognitive neuroscience of visual working memory

    Get PDF
    Visual working memory allows us to temporarily maintain and manipulate visual information in order to solve a task. The study of the brain mechanisms underlying this function began more than half a century ago, with Scoville and Milner’s (1957) seminal discoveries with amnesic patients. This timely collection of papers brings together diverse perspectives on the cognitive neuroscience of visual working memory from multiple fields that have traditionally been fairly disjointed: human neuroimaging, electrophysiological, behavioural and animal lesion studies, investigating both the developing and the adult brain
    corecore